Загрязнение почв и его экологические последствия

      Комментарии к записи Загрязнение почв и его экологические последствия отключены

Почва – важное звено круговорота веществ и потока Е в наземных биоцинозах. В почве растение поглащает минеральные вещества и воду. В ней происходит деятельность редуцентов, реализующих отмершее вещество. Происходит накопление гумуса, что повышает ее плодородие.

Почва определяет продуктивность растительных сообществ, создающихпищевые ресурсы для человека и всех других гетеротрофных организмов.

Почва – фильтр для ачистки воды, санитарный борьер.

С/х-угодья – в с/х- производстве. В настоящее время на Земле до 11% суши используется для распашки.

В мире постоянно идут обратные процессы. Практически все земли пригодные для с/х-производства используются.

Строительство городов, дорог, создание полигонов для отходов.

Значительное воздействие, ведущее к сокращению пахотных земель – опустынивание.

Воздействие человека на почву: оно постоянно возрастало. Разрушение естественных ландшафтов, эрозия почвы, снижение ее плодородия, обеднение видового разнообразия.
Это ведет к уменьшению устойчивости природных экосистем и Биосферы в целом.

Важные факторы плодородия: достаточное количество минеральных соединений, хорошая аэрация почвы.

Различают естественное потенциальное и искусственное плодородие почв. Искусственное определяется путем использования разнообразных агротехнических средств. Приводит к повышению урожайности. Но это возможно при дополнительном вкладе Е.

Эрозия почвы – позрушение под действием воды или воздуха. В 30гг. США – сильная эрозия была.

Водная эрозия. Воздушная эрозия (в районе Полесья).

Орашаемое земледелие: ¼ земель засолена.

Истощение земель. Причины: вынос питательных веществ вместе с урожаем. Потери гумуса.

Приминение минеральных удобрений привело к загрязнению почвы. Вынос минеральных удобрений в водоемы. Многие удобрения содержат радиоизотопы, т.е. повышают естественный радиационный фон. Благодаря применению пестицидов – повышение урожайности, но это вызывает и заболевания у человека. Радиактивное загрязнение почвы.

9.Кровь её свойства и функции.

Кровь – одна из тканей внутренней среды. Два основных элемента крови – плазма и взвешенные в ней клетки (эритр., лейкоц., тромбоц.). У взрослого человека общий обьём крови 4-6л, около 1л находиться в депо крови, преимущественно в селезенке. Обьём крови, приходящийся на долю эритроцитов наз. гематокритом (44% — 46% у мужч., 41% — 43% у женщ). Вязкость крови сост-ет 3,5- 4,5,вязкость плазмы 1,9-2,6,если вязкость воды принять за единицу.

Функции крови:

1.Транспорт.Кровь циркулирует в замкнутой системе сосудов и переносит газы, питательные вещества, гормоны, белки, ионы, продукты метаболизма.

2.Гомеостаз. Гомеостаз яв-ся важнейшим условием жизнедеятельности клеток и органов. Кровь поддерживает постоянство внутренней среды организма, обеспечивает распределение тепла (т.к имеет высокую теплоёмкость ), осмотическое равновесие и кислотно-щелочной баланс.

3.Защитная.Осуществление защитных реакций – уничтожение микроорганизмов, участие в воспалительных и иммунных реакциях. Это обусловлено наличием фагоцитирующих и антителобразующих клеток.

4.Гемокоагуляция. Кровь содержит тромбоциты и плазменные факторы свёртывания, при нарушении целостности сосудистой стенки образующие тромб, препятствующие потере крови.

Плазма крови: состоит из воды (90%), органических (9%) и неорганических веществ (1%). Удельный вес 1,025-1,029, pH 7,4. Белки составляют 6% всех веществ плазы. Среди сотен различных белков плазмы выделяют три главные группы: белки системы свертывания крови, белки участвующие в иммунных реакциях, транспортные белки.

1.Белки системы свёртывания крови. Различают коагулянты и антикоагулянты. Обе группы белков обеспечивают равновесие между процессами формирования и разрушения тромба. Коагулянты уча-ют в формировании тромба. В первую очередь это плазменные факторы свёртывания ( н-р фибриноген, превращается в фибрин и образует тромб). Антикоагулянты – компоненты фибринолитической системы (препятствуют свёртыванию).

2.Белки участвующие в иммунных реакциях. К этой группе относят Ig и белки комплемента (участвуют в неспецифической защите клеток хозяина и инициируют реакции воспаления).

3.Транспортные белки –альбумины, аполипопротеины, трансферин, гаптоглобин, транскортин, транскобаламины, церулоплазмин. Благодаря большой поверхности с многочисленными гидрофильными и липофильными участками эти белки выполняют роль переносчиков. Н-р переносят жирные кислоты, многие гормоны т.д.оциты, приходящийся на эритроцитыоромбоц.).лазма) и взвешенные в нем клетки(эритр.,ови —
10. Сердечный цикл. Механизм возбуждения сердечной мышцы.

Сердце расположено ассиметрично в среднем средостении. С. представляет собой полый мышечный орган, разделенный внутри на четыре полости: правое и левое предсердия и правый и левый желудочки. Функциональным элементом сер. являются мышечные волокна, выделяют 2 типа:

1. Волокна рабочего миокарда (обеспеч. сократимость)

2. Волокна водителя ритма и проводящей системы, обеспеч. генерацию и проведение ПД.

Миокард – возбудимая ткань, кот. ведет себя как функц. синуитий, т.е. возбуждение возникает в одном отделе сер. и мгновенно охватывает все сер. (закон «все или ничего»).

Ритмичн. сокр.-е сер. возникает под влиянием импульсов, возникающих в самом сер. В здоровом сер. они возникают в синоатриальном узле, кот. расположен в стенке прав. предсердия. ЧСС – 70 в 1′. От этого узла импульсы распр.-ся по миокарду предсердия к атриовентрикулярному узлу (находится на границе м/д предс. и желуд.) Здесь происходит задержка импульсов, после чего импульс распр.-ся дальше по проводящей системе к рабочему миокарду. Проводящая система состоит из специлизир.-х клеток и вкл.-т в себя пучок Гиса, прав. и лев. ножки Гиса, волокна Пуркиенье. Скорость распрас.-я имп.-са по системе = 2 м/сек. Если в синоатр. узле импульс не возн.-т, то роль водителя ритма берет на себя атриовен. узел ( водитель ритма II порядка). Если проведение возбуждения нарушено ниже атриовен. узла. (при полной поперечной блокаде), то роль водителя ритма берут на себя пучок Гиса или ножки Гиса. Чсс=30 -40 в 1′. В норм. условиях водители ритма II и III порядка не функцион., т.к. их активность подавляется вод. ритма I порядка.

ПД начинается с быстрой риверсии мембр. потенциала от уровня покоя (-90) до пика (+30). Это фаза быстрой деполяризации (1-2 сек.), происходит активация медленных Na-K каналов и поток ионов Ca внутрь клетки приводит к развитию фазы плато ПД (хар-на только для кардиомиоцитов). В период плато натриевые кан-лы инакт.-ся и клетка переходит в состояние абсолютной рефрактерностиaативир.-ся калиевые каналыaвыходящий поток ионов калия обеспечивает быструю реполяризацию мембраны, кот. вызывает постепенное закрывание калиевых и реактивацию натриевыхaрезул. возбудимость миокадиальной клетки восстанавл.

Определенным фазам цикла в сер. соот.-т периоды невозбудимости – абсолютная рефрактерность и сниженной возбудимости – относител. рефрактерность. Длител.-й рефрак. период предохраняет миокард от слишком быстрого возбуждения, кот. могло бы вызвать сокращение, когда не произошло еще кровенаполнение сердца.

Клетки рабочего миокарда не обладают автоматизмом. ПД в них возникает под влиянием распространяющегося возбуждения. Когда в рез.-те деполяризации, мембр. птенц.-л достигает критического уровня, в кл.-х рабочего миокарда возникает ПД. В кл.-х, облад.-их автоматизмом деполяризация до критич. уровня возникает спонтанно. В таких клетках за фазой репол.-и следует фаза медлен. диастол.-ой деполяр.-ии, приводящая к a мембр. потен.-ла до порогового уровня.

Способность клеток миокарда в теч. жизни находиться в сост. непрерывной ритмической активности обеспе.-ся эффект.-ой работой ионных насосов этих клеток. В период диастолы из клетки выводятся ионы Na, а в клетку возвращ. ионы K. Ионы Ca, проникшие в цитоплаз. поглощаются ЭПР.

Ухудшение кровоснабж.-я миокарда (ишемия) ведет к обеднению запасов АТФ и креатинфосфата в миокард. клетках; работа насосов нарушается, вледствие чего уменьш.-ся электрическая и механич. актив.-ть миокардиальных клеток.

11. Понятие «стресс», предложенное Селье, является удобным обобщением, обозначающим то состояние организма, которое характеризует развертывание общего неспецифического механизма адаптации, чем обеспечиваются положительный фон для осуществления специфических гомеостатических реакций и мобилизуются защитные способности организма. Факторы, обуславливающие состояние стресса названы стрессорами. У стресса нет своей специфической причины. Для него характерны собственные формы многочисленных морфологических, биохимических и функциональных проявлений, составляющие общий адаптационный синдром, являющийся трехфазной неспецифической реакцией адаптации: состоит из стадий тревоги, резистентности и истощения.

Стадия тревоги (alarm-реакция) – мобилизация защитных сил. Эта стадия разделяется на две фазы: шока и контрашока. Для фазы шока типичны гипотермия, гипотония, угнетение ЦНС, падение мышечного тонуса, расстройства проницаемости капиллярных и клеточных мембран, гипохлоремия, гиперкалиемия, острые язвы в пищеварительном тракте и др. В этой фазе появляются ранние защитные механизмы, повышается секреция адреналина, кортикотропина и кортикоидов, но более выражены эти изменения в следующей фазе.

Для фазы контрашока свойственны развертывание защитного феномена против шока (повышенная активность коркового и мозгового слоев надпочечников), инволюция тимуса и лимфоидной ткани и изменения, противоположные фазе шока: повышение артериального давления, гиперхлоремия, гипертермия и др.

Селье допускает, что в случае действия стрессора, не очень значительного по силе, а также если в эволюции организм тесно связывается с воздействием конкретного стрессора (например, физических нагрузок), то этот стрессор вызывает сразу фазу контрашока без предварительной фазы шока. Фаза контрашока является переходным этапом к следующей стадии – стадии резистентности, которая наблюдается при хронически действующих агентах, сила которых не превышает защитных возможностей организма.

Стадия резистентности, или устойчивости – приспособление к трудной ситуации. Эта стадия приводит к поддержанию нормального существования организма в новых для него условиях, то есть повышается сопротивляемость организма к стрессору; при этом сопротивляемость организма к другим стрессорам может иногда повышаться (неспецифическая резистентность), но чаще она оказывается пониженной. В этой стадии морфологические и биохимические изменения, свойственные стадии тревоги, исчезают.

Стадия истощения развивается вследствие чрезмерно продолжительного (или многократного) действия стрессора, в отношении которого заранее выработанную резистентность невозможно больше поддерживать. На этой стадии опять появляются изменения, свойственные стадии тревоги. При сильном и длительном стрессе такое воздействие может привести к болезни или смерти [3].

Основными компонентами механизма общей адаптации являются три:

мобилизации энергетических ресурсов организма для энергетического обеспечения функций; мобилизации пластического резерва организма и адаптивный синтез энзимных и структурных белков; мобилизация защитных способностей организма. Осуществление всех трех компонентов требует сложного взаимодействия различных функциональных систем [4].

Общие адаптационные реакции организма являются неспецифическими, то есть организм аналогично реагирует в ответ на действие различных по качеству и силе раздражителей. При действии сильных, чрезвычайных раздражителей в организме возникает «реакция стресс». При этом в центральной нервной системе развивается резкое возбуждение, сменяющееся запредельным торможением – крайней мерой защиты. Биологическая целесообразность подобной реакции заключается в снижении возбудимости и реактивности, так как адекватный ответ на этот раздражитель мог бы привести организм к гибели.

При действии на организм слабых, пороговых раздражений («реакция тренировки») в центральной нервной системе развивается возбуждение, быстро сменяющееся охранительным торможением, что обеспечивает снижение ее возбудимости по отношению к слабому раздражителю.

При действии раздражителей средней силы происходит развитие «реакций активации» — активации защитных систем организма, которая, однако, не носит характера патологической гиперфункции. Уровень энергетического обмена при этой реакции менее экономичен, чем при реакции тренировки, но, в отличие от стресса, не приводит к истощению.

Таким образом, адаптация организма к слабым и средним по силе воздействиям происходит без элементов повреждения и истощающих организм энергетических трат. При этом отмечается в случае реакции тренировки – постепенное, а в случае реакции активации – быстрое повышение резистентности организма [1].

Группы крови.

Группы крови определяются различным сочетанием антигенов эритроцитов (агглютиногенов) и антигенов плазмы (агглютининов). Но понятие «группа крови» подразумевает все генетически наследуемые факторы, выявляемые в крови человека: сывороточные и клеточные факторы (эритроцитарные, лейкоцитарные, тромбоцитарные). Известно около 250 групповых антигенов, которые объединяются в системы. Для эритроцитов известно более 15 систем. Наиболее распространенная система – система АВО. Другие антигенные системы эритроцитов:

1. система Lewis,

2. система Kell,

3. система Duffy.

Система групп крови АВО

Открыта в 1901г. Карлом Ландштейнером.

Аллели группы крови наследуются кодоминантно. Полиморфизм групп крови в системе определяется распространенностью и числом аллелей генов в популяции. Наиболее часто встречаются I и II группы.

Выделяют 4 группы крови взависимости от сочетания агглютиногенов эритроцитов (А, В) и агглютининов плазмы (?, ?).

Группа крови агглютиногены на мембране эритроцитов (А и В) агглютинины в плазме крови (? и ?)
I (О) ? и ?
II (А) А ?
III (В) В ?
IV (АВ) А и В

Совместимость групп крови при гемотрансфузии:

Группа крови донора Группа крови реципиента
I (О) I, II, III, IV
II (А) II, IV
III (В) III, IV
IV (АВ) IV

В настоящее время для переливания крови используют кровь только одноименной группы.

Определение групп крови. 1.Для определения групп крови сущ. изогемагглютинирующие сыворотки: анти-А и анти-В. В крови устанавливают наличие или отсутствие агглютиногенов. 2. Сущ. и перекрестный способ: одновременное определение при помощи сывороток + стандартные эритроциты. Сыворотка-налич. или отсутствие агглютиногенов; эритроциты-налич. или отсутствие агглютининов. 3.С помощью цоликлонов анти-А и анти-В (моноклональные Ат к антигенам эритроцитов А и В ). Предназначены для определения групп крови с-мы АВО ч-ка взамен стандартных изогемагглютинирующих сывороток. Для каждой опред. гр. Крови применяется по одной серии реагента анти-А и анти-В. Дополнит. Контролем правильности определения гр. крови АВО реагентами анти-А и анти-В является моноклональный реагент анти-АВ.

Система крови Резус

Резус-фактор. Он так назван в связи с тем, что впервые был обнаружен в крови обезьяны мартышки (Macacus rhesus). Установлено, что Rh имеется в крови у 86% людей-это резсположительные люди (Rh+); у 14% он отсутствует-резусотрицательные люди (Rh-). Rh находится в эритроцитах, не зависит от пола и возраста, не связан с агглютиногенами эритроцитов. В отличие от агглютиногенов у Rh в сыворотке агглютининов или антител не имеется. Практическое значение: если повторно в кровь Rh- людям ввести кровь Rh+ людей происходит гемолиз. Это обусловлено тем, что у Rh- людей образуются анти-резус-агглютинины. Обнаружена связь между Rh матери и гемолитической болезнью новорожденных (у Rh- -матери образуются антитела к эритроцитам Rh+-плода). При переливании крови необходимо учитывать Rh-фактор.

Обнаружена связь между Rh матери и гемолитической болезнью новорожденных (у Rh- -матери образуются антитела к эритроцитам Rh+-плода).

Загрязнение почвы