Устройство и принцип работы фотоэлектроколориметра (фэк)

      Комментарии к записи Устройство и принцип работы фотоэлектроколориметра (фэк) отключены

В основе колориметрического метода лежит закон Ламберта – Меера — Бера (1852), согласно которому существует прямая пропорциональная зависимость между концентрацией вещества в окрашенном растворе и степенью поглощения лучей света данным раствором. Интенсивность поглощения света зависит не только от количества и природы растворенного вещества, но и от толщины слоя раствора, длины волны падающего света, температуры раствора.

Степень поглощения света окрашенным раствором выражается оптической плотностью (экстинцией), под которой понимают отношение интенсивности света, падающего на раствор, к интенсивности света, прошедшего через раствор. Величина оптической плотности обозначается буквой Е или D. Чем больше оптическая плотность, тем меньше света пропускает раствор, то есть между оптической плотностью и светопропусканием существует обратная пропорциональная зависимость (Е=lg 1/r, где r — коэффициент светопропускания). Для определения плотности или светопропускания используют фотоэлектроколориметры.

Устройство колориметра фотоэлектроколориметра ( ФЭК-2 )

Фотоэлектроколориметр предназначен для определения концентрации вещества в окрашенных растворах по их оптической плотности или коэффициенту светопропускания.

Схема прибора

В качестве источника света в КФК-2 используется лампа накаливания (1). Световой поток от лампы накаливания проходит через диафрагму (2), объектив (3), усиливающий свет в 10 раз, и светофильтр (4).

В КФК-2 имеется набор светофильтров. Использование конкретного цветового светофильтра позволяет пропускать через раствор лучи определенной длины волны, поглощение которых характерно для исследуемого вещества. Обычно эффективная длина волны и цвет светофильтра указывают в используемом методе. Приведенная ниже таблица позволяет ориентировочно выбрать светофильтр для измерения оптической плотности некоторых окрашенных растворов:

Окраска исследуемого раствора Цвет необходимого светофильтра Длина волны пропускаемого света в нм
Желтая Синий 420-450
Оранжевая Синий 430-460
Красная Зеленый 460-500
Пурпурная Зеленый 490-530
Синяя Оранжевый
Сине-зеленая Красный 600-650

Световой поток, пройдя через светофильтр и кювету с раствором (5), падает на приемник света (6, 7) — фотоэлемент Ф-26 (в области спектра 315-540 нм) или фотодиод (в области спектра 590-980 нм). В фотоприемниках световая энергия преобразуется в электрическую, изменение количества которой отражает микроамперметр (9). Показания микроамперметра пропорциональны силе светового потока, прошедшего через исследуемый раствор.

К фотоэлектроколориметру КФК-2 прилагается набор кювет, отличающихся расстоянием между рабочими гранями, через которые проходит световой поток. Это расстояние (в мм) указывается на одной из рабочих граней. В наборе по три кюветы с рабочей длиной 5, 10, 20, 30 и 50 мм. На боковой стенке кюветы имеется риска, до которой наливают раствор. При работе с летучими растворителями кюветы закрывают специальными крышками.

Общий вид прибора

1. Микроамперметр (измерительный прибор имеет две шкалы: нижняя (D) — шкала оптической плотности (от 0 до 1,5), верхняя — регистрирует коэффициент светопропускания (от 0 до 100%).

2. Крышка кюветного отделения, которую при открывании и закрывании держат за специальные ручки (2а).

3. Рукоятка установки нужного светофильтра.

4. Рукоятка перемещения кювет, установленных в кювето- держатель в кюветном отделении.

5. Рукоятка включения фотоприемников (чувствительность). Возможны три положения этой рукоятки: 1, 2, 3 (чувствительность от меньшей к большей). Рукоятка устанавливается на цифры черного цвета в интервалах длин волн 315-540 нм или красного цвета при длине волн 590-980 нм.

6. Рукоятка “Установка грубо”.

7. Рукоятка “Установка точно”.

8. Включатель и выключатель сетевого напряжения находится на задней стенке прибора (внизу, слева).

9. Индикаторная лампочка.

Измерение оптической плотности на КФК-2

1. С помощью рукоятки 3 установить нужный светофильтр (по длине волны).

2. Рукояткой 5 установить чувствительность в положение 1 черного или красного цвета в зависимости от длины волны.

3. Рукоятки 6 и 7 (“установки грубо, точно”) повернуть до упора влево. При таком положении рукояток чувствительность минимальна, что предохраняет микроамперметр от перегрузки.

4. Включить прибор в сеть: вилку шнура вставить в розетку электросети, рукоятку 8 — в положение “включено”. Загорается сигнальная лампочка (9). Прибор прогревать 15-20 минут с открытой крышкой кюветного отделения.

5. Поставить кювету с растворителем (или контролем) во второе (дальнее от передней стенки) гнездо кюветодержателя, а кювету с исследуемым раствором — в первое (ближнее) гнездо. Закрыть крышку кюветного отделения.

6. Кювету с растворителем (контролем) поместить в световой поток, повернув рукоятку 4 до упора влево.

7. Установить стрелку микроамперметра на нуль по шкале оптической плотности рукояткой 6 (“установка грубо”). В случае необходимости подвести стрелку к нулю рукояткой 7 (“установка точно”).

8. Переместить в световой поток кювету с исследуемым раствором, повернув рукоятку 4 до упора вправо и записать значение оптической плотности по нижней шкале микроамперметра.

9. Сразу повернуть рукоятки 6 и 7 до упора влево.

10. По окончании работы убрать кюветы и навести порядок в кюветном отделении и у фотоэлектроколориметра, отключить прибор от электросети и вымыть кюветы.

Дополнительные материалы:

Фотоколориметрический метод определения концентрации ионов железа


Похожие статьи: