Роль серина и глицина в образовании одноуглеродных групп.

      Комментарии к записи Роль серина и глицина в образовании одноуглеродных групп. отключены

Образование и использование
одноуглеродных фрагментов

Особое значение реакций катаболизма серина и глицина заключается в том, что они сопровождаются образованием одноуглеродного метиленового фрагмента (-СН2-). Метиленовая группа в молекуле метилен- Н4-фолата может превращаться в другие одноуглеродные группы (фрагменты): метенильную (-СН=), формильную (-НС=О), метильную (-СН3) и формиминогруппу (-CH=NH) (рис. 9-25).

Ещё один источник формального и форми-мино-фрагментов — гистидин. Катаболизм гистидина происходит только в печени (очень небольшой процент в коже) в результате следующих реакций (см. схему на с. 498).

Конечными продуктами катаболизма гистидина являются глутамат, NH3 и одноуглеродные фрагменты — формимино-Н4-фолат и формил-Н4-фолат.

Все образующиеся производные Н4-фолата играют роль промежуточных переносчиков и служат донорами одноуглеродных фрагментов при синтезе некоторых соединений: пуриновых оснований и тимидиловой кислоты (необходимых для синтеза ДНК и РНК), регенерации метионина, синтезе различных формиминопроизводных (формиминоглицина и т.д.)

Перенос одноуглеродных фрагментов к акцептору необходим не только для синтеза ряда соединений, но и для регенерации свободного Н4-фолата в печени.

31.Тетрагидрофолиевая кислота, роль в синтезе и использовании одноуглеродных радикалов. Метилирование гомоцистеина

Ферменты, коферментами которых служат производные фолиевой кислоты играют большую роль в превращениях серина и глицина. Фолиевая кислота – это витамин В9.

— Фолиевая кислота
Роль серина и глицина в образовании одноуглеродных групп.

Коферментную функцию выполняет восстановленная форма фолата – тгфк(или Н4-фолат):

Роль серина и глицина в образовании одноуглеродных групп.

Фолиевая кислота в печени превращается в Н4-фолат в несколько стадий с участием ферментов фолатредуктазы и дигидрофолатредуктазы, коферментом которых служит NADPH.

Особое значение реакций катаболизма серина и глицина заключается в том, что они сопровождаются образованием одноуглеродного метиленового фрагмента (-СН2-), переносчиком которого и является тгфк.

(реакции чисто для наглядности):

Роль серина и глицина в образовании одноуглеродных групп.

Роль серина и глицина в образовании одноуглеродных групп.

Метиленовая группа в молекуле метилен- Н4-фолата может превращаться в другие одноуглеродные группы (фрагменты): метенильную (-СН=), формильную (-НС=О), метильную (-СН3) и формиминогруппу (-CH=NH)

Таким образом главная роль тгфк — перенос одноуглеродных фрагментов. Они также могут использоваться в дальнейшем для синтеза некоторых соединений: пуриновых оснований и тимидиловой кислоты (необходимых для синтеза ДНК и РНК).

Собственно куда именно присоединяется :

Роль серина и глицина в образовании одноуглеродных групп.

Реакции метилирования играют важную роль в организме и протекают очень интенсивно. Это вызывает большой расход метионина, так как он является незаменимой аминокислотой (в клетках метионин синтезироваться не может). Метионин — незаменимая аминокислота. Активной формой метионина является S-аденозилметионин (SAM) — сульфониевая форма аминокислоты, образующаяся в результате присоединения метионина к молекуле аденозина.

Роль серина и глицина в образовании одноуглеродных групп.

Отщепление метильной группы от SAM и перенос её на соединение-акцептор катализируют ферменты метилтрансферазы. SAM в ходе реакции превращается в S-аденозилгомоцистеин (SAT).

S-аденозилгомоцистеин при действии гидролазы расщепляется на аденозин и гомоцистеин.

S-аденозилгомоцистеин + Н2ОАденозин + Гомоцистеин

Гомоцистеин может снова превращаться в метионин под действием гомоцистеинметилтранс феразы. Донором метильной группы в этом слу чае служит N5-метил-Н4-фолат.

Метилирование гомоцистеина:

Роль серина и глицина в образовании одноуглеродных групп.

Метионин — незаменимая аминокислота, однако может регенерироваться из гомоцистеина. Следовательно, незаменим именно гомоцистеин, но единственным его источником в организме служит метионин. В пище гомоцистеина крайне мало, поэтому потребности человека в метиони-не и гомоцистеине обеспечиваются только метионином пищи.

Вопрос 32 Недостаточность фолиевой кислоты и витамина В12. Антивитамины фолиевой кислоты. Механизм действия сульфаниламидных препаратов.

Гиповитаминоз фолиевой кислоты приводит к нарушению обмена одноуглеродных фрагментов.

Первое проявление дефицита фолиевой кислоты — мегалобластная (макроцитарная) анемия. Она характеризуется уменьшением количества эритроцитов, снижением содержания в них гемоглобина, что вызывает увеличение размера эритроцитов. Причина этих симптомов — нарушение синтеза ДНК и РНК из-за недостатка их предшественников — тимидиловой кислоты и пуриновых нуклеотидов вследствие дефицита производных Н4-фолата. Клетки кроветворной ткани быстро делятся, поэтому они в первую очередь реагируют на нарушение синтеза нуклеиновых кислот снижением скорости эритропоэза.

Мегалобластная анемия возникает чаще всего в результате недостаточности фолиевой кислоты и/или витамина В12.

Антивитамины фолиевой кислоты:

Роль серина и глицина в образовании одноуглеродных групп.

Фолиевая кислота является витамином для человека и животных. Однако многие патогенные бактерии способны синтезировать это соединение, используя парааминобензойную кислоту (ПАБК) — одну из составных частей фолата. ПАБК поступает в бактериальные клетки из внешней среды. Сульфаниламидные лекарственные препараты — производные сульфаниламида (белого стрептоцида), похожи по строению на парааминобензойную кислоту. Отличаются они только радикалами.

Эти препараты подавляют синтез фолиевой кислоты у бактерий, потому что:

конкурентно ингибируют бактериальные ферменты синтеза фолата, так как являются структурными аналогами парааминобензойной кислоты — одного из субстратов процесса;

могут использоваться как псевдосубстраты из-за относительной субстратной специфичности ферментов, в результате чего синтезируется соединение, похожее на фолиевую кислоту, но не выполняющее её функции.

В обоих случаях в клетках бактерий нарушается обмен одноуглеродных фрагментов и, следовательно, синтез нуклеиновых кислот, что вызывает прекращение размножения бактерий.

В клетках больного сульфаниламидные лекарственные вещества не вызывают подобных изменений, поскольку человек получает с пищей готовую фолиевую кислоту.

Вопрос 33. . Обмен фенилаланина и тирозина. Все пути превращения в норме.

Фенилаланин — незаменимая аминокислота, так как в клетках животных не синтезируется её бензольное кольцо. Тирозин — условно заменимая аминокислота, поскольку образуется из фенилаланина.

Основное количество фенилаланина расходуется по 2 путям:

-включается в белки;

-превращается в тирозин.

Превращение фенилаланина в тирозин прежде всего необходимо для удаления избытка фенилаланина, так как высокие концентрации его токсичны для клеток. Образование тирозина не имеет большого значения, так как недостатка этой аминокислоты в клетках практически не бывает.

Основной путь метаболизма фенилаланина начинается с его гидроксилирования (рис. 9-29), в результате чего образуется тирозин. Эта реакция катализируется специфической монооксиге-назой — фенилаланингидроксилазой, коферментом которой служит тетрагидробиоптерин (Н4БП). Активность фермента зависит также от наличия Fe2+. Реакция необратима. Н4БП в результате реакции окисляется в дигидробиоптерин (Н2БП). Регенерация последнего происходит при участии дигидроптеридинредуктазы с использованием NADPH + H+.

Роль серина и глицина в образовании одноуглеродных групп.

Обмен тирозина значительно сложнее, чем обмен фенилаланина. Кроме использования в синтезе белков, тирозин в разных тканях выступает предшественником таких соединений, как катехоламины, тироксин, меланины, и ка-таболизируется до СО2 и Н2О.

Катаболизм тирозина в печени: Ферменты :

1реакция – тирозинаминотрансфераза

2 – n-гидроксифенилпируватдиоксигеназа

3-диоксигеназа гомогентизиновой кислоты

4-фумарилацетоацетатгидролаза

Роль серина и глицина в образовании одноуглеродных групп.

Катаболизм в щитовидной– образование:

Роль серина и глицина в образовании одноуглеродных групп.

Превращения в меланоцитах – эумеланины и феомеланины. Эумеланины (чёрного и коричневого цвета) — нерастворимые высокомолекулярные гетерополимеры 5,6-дигидроксииндола и некоторых его предшественников. Феомеланины — жёлтые или красновато-коричневые полимеры, растворимые в разбавленных щелочах. Находятся они, в основном, в составе волос. Меланины присутствуют в сетчатке глаз. Цвет кожи зависит от распределения меланоцитов и количества в них разных типов меланинов.Синтез меланинов — сложный, многоступенчатый, разветвлённый процесс. Первую реакцию — превращение тирозина в ДОФА — катализирует тирозиназа, использующая в качестве кофактора ионы Сu+

Роль серина и глицина в образовании одноуглеродных групп.

В надпочечниках:

Роль серина и глицина в образовании одноуглеродных групп.

Ферменты: 1-тирозингидроксилаза

2- дофа-декарбоксилаза

3-дофамингидроксидаза

4-метилтрансфераза.

Вопрос 34 — Фенилкетонурия, биохимический дефект, проявление болезни, диагностика, лечение.

В печени здоровых людей небольшая часть фенилаланина (?10%) превращается в фенил-лактат и фенилацетилглутамин . Этот путь катаболизма фенилаланина становится главным при нарушении основного пути — превращения в тирозин, катализируемого фенилаланингидроксилазой. Такое нарушение сопровождается гиперфенилаланинемией и повышением в крови и моче содержания метаболитов альтернативного пути: фенилпирувата, фенилацетата, фениллактата и фенилацетилглу-тамина.

Роль серина и глицина в образовании одноуглеродных групп.

Дефект фенилаланингидроксилазы приводит к заболеванию фенилкетонурия (ФКУ). Выделяют 2 формы ФКУ:

Классическая ФКУ — наследственное заболевание, связанное с мутациями в гене фенилаланингидроксилазы, которые приводят к снижению активности фермента или полной его инактивации. При этом концентрация фенилаланина повышается в крови в 20-30 раз

Вариантная ФКУ (коферментзависимая гиперфенилаланинемия) — следствие мутаций в генах, контролирующих метаболизм Н4БП. Клинические проявления — близкие, но не точно совпадающие с проявлениями классической ФКУ. Частота заболевания — 1-2 случая на 1 млн новорождённых.

Прогрессирующее нарушение умственного и физического развития у детей, больных ФКУ, можно предотвратить диетой с очень низким содержанием или полным исключением фенилаланина. Если такое лечение начато сразу после рождения ребёнка, то повреждение мозга предотвращается. Считается, что ограничения в питании могут быть ослаблены после 10-летнего возраста (окончание процессов миелиниза-ции мозга), однако в настоящее время многие педиатры склоняются в сторону пожизненной диеты.

Для диагностики ФКУ используют качественные и количественные методы обнаружения патологических метаболитов в моче, определение концентрации фенилаланина в крови и моче. Дефектный ген, ответственный за фенилкетонурию, можно обнаружить у фенотипически нормальных гетерозиготных носителей с помощью теста толерантности к фенилаланину. Для этого обследуемому дают натощак ?10 г фенилаланина в виде раствора, затем через часовые интервалы берут пробы крови, в которых определяют содержание тирозина. В норме концентрация тирозина в крови после фенилаланиновой нагрузки значительно выше, чем у гетерозиготных носителей гена фежилкетонурии. Этот тест используется в генетической консультации для определения риска рождения больного ребёнка. Разработана схема скрининга для выявления новорождённых детей с ФКУ. Чувствительность теста практически достигает 100%.

В настоящее время диагностику мутантного гена, ответственного за ФКУ, можно проводить с помощью методов ДНК-диагностики (рестрикционного анализа и ПЦР).

Вопрос 35. Алкаптонурия, альбинизм. Биохимический дефект, проявление болезней.

Алкаптонурия (чёрная моча)

Причина заболевания — дефект диоксигеназы гомогентизиновой кислоты. Для этой болезни характерно выделение с мочой большого количества гомогентизиновой кислоты, которая, окисляясь кислородом воздуха, образует тёмные пигменты алкаптоны. Это метаболическое нарушение было описано ещё в XVI веке, а само заболевание охарактеризовано в 1859 г. Клиническими проявлениями болезни, кроме потемнения мочи на воздухе, являются пигментация соединительной ткани (охроноз) и артрит. Частота — 2-5 случаев на 1 млн новорождённых. Заболевание наследуется по аутосомнорецессивному типу. Диагностических методов выявления гетерозиготных носителей дефектного гена к настоящему времени не найдено.

Альбинизм

Причина метаболического нарушения — врождённый дефект тирозиназы. Этот фермент катализирует превращение тирозина в ДОФА в меланоцитах. В результате дефекта тирозиназы нарушается синтез пигментов меланинов.

Клиническое проявление альбинизма (от лат. albus — белый) — отсутствие пигментации кожи и волос. У больных часто снижена острота зрения, возникает светобоязнь. Длительное пребывание таких больных под открытым солнцем приводит к раку кожи. Частота заболевания 1:20 000.

Нарушение синтеза катехоламинов может вызывать различные нервно-психические заболевания, причём патологические отклонения наблюдаются как при снижении, так и при увеличении их количества.

Вопрос 36 Нарушения синтеза дофамина при паркинсонизме.

Болезнь Паркинсона

Заболевание развивается при недостаточности дофамина в чёрной субстанции мозга. Это одно из самых распространённых неврологических заболеваний. При этой патологии снижена активность тирозингидроксилазы, ДОФА-декарбоксилазы. Заболевание сопровождается тремя основными симптомами: акинезия (скованность движений), ригидность (напряжение мышц), тремор (непроизвольное дрожание). Дофамин не проникает через гематоэнцефалический барьер и как лекарственный препарат не используется. Для лечения паркинсонизма предлагаются следующие принципы:

заместительная терапия препаратами-предшественниками дофамина (производными ДОФА) — леводопа, мадопар, наком и др.

подавление инактивации дофамина ингибиторами МАО (депренил, ниаламид, пиразидол и др.).

Депрессивные состояния часто связаны со снижением в нервных клетках содержания дофамина и норадреналина.

Гиперсекреция дофамина в височной доле мозга наблюдается при шизофрении.

Вопрос 37 Конечные продукты азотистого обмена: соли аммония и мочевина.

Конечные продукты обмена белков:

C, H, O, N , S. – CO2 , H2O, NH3, H2S.

Соли аммония выводятся с мочой:

В почкахтакже происходит гидролиз глутамина под действием глутаминазы с образованием аммиака. Этот процесс является одним из механизмов регуляции кислотно щелочного равновесия в организме и сохранения важнейших катионов для поддержания осмотического давления. Глутаминаза почек значительно индуцируется при ацидозе, образующийся аммиак нейтрализует кислые продукты обмена и в виде аммонийных солей экскретируется с мочой .

Роль серина и глицина в образовании одноуглеродных групп.

Эта реакция защищает организм от излишней потери ионов Na+ и К+, которые также могут использоваться для выведения анионов и утрачиваться. При алкалозе количество глутаминазы в почках снижается.

В почках образуется и выводится около 0,5 г солей аммония в сутки.

В печени – синтез мочевины ( в следующих вопросах будет подробно описано. Честно говоря, странный вопрос – скорее всего надо просто сказать где образуется.)

Вопрос №38. Основные источники и пути обезвреживания аммиака в организме.

Источники:

1. Аминокислоты :

a) Непрямое дезаминирование(основной путь дезаминирования амк)

b) Окислителное дезаминирование глутамата

c) Окислителное дезаминирование амк(малозначимый путь дезаминирования)

d) неокислительное дезаминирование Гис,Сер ,Тре

2. биогенные амины :

окислительное дезаминирование (путь инактивации биогенных аминов)

3. нуклеотиды:

4. гидролитическое дезаминирование АМФ

5. гниение белков в кишечнике в результате действия бактерий на пищевые белки.

Пути обезвреживания:связывание аммиака с образованием нетоксичных соединений,которые выводятся из организма вместе с мочой

1. Синтез глутамина под действием глутаматсинтетазы

Роль серина и глицина в образовании одноуглеродных групп.

2. Синтез аспарагина под действием аспарагинсинтета

Роль серина и глицина в образовании одноуглеродных групп.

3. Синтез мочевиы в печени Роль серина и глицина в образовании одноуглеродных групп. + Роль серина и глицина в образовании одноуглеродных групп. + Роль серина и глицина в образовании одноуглеродных групп. O Роль серина и глицина в образовании одноуглеродных групп. карбомоилфосфат – 2АТФ

4. Восстановительное аминирование а-кетоглутарата

Роль серина и глицина в образовании одноуглеродных групп.

Вопрос №39 Роль глутамина в обезвреживании и транспорте аммиака в организме.

глутамин образуется при обезвреживании аммиака (мышцы, мозг, печень)Связывание аммиака глутамином протекает во всех тканях организма

Глутамин легко транспортируется через клеточные мембраны путём облегчённой диффузии и транспортируется из тканей в кровь.

Вопрос №40 Глутамин как донор амидной группы при синтезе ряда соединений.

Высокий уровеньглутамина в крови и легкость его поступления в клетки обусловливают использования глутамина во многих анаболических процессах

Глутамин — основной донор азота в организме.Амидный азот глутамина используется для синтеза пуриновых и пиримидиновых нуклеотидов, аспарагина, аминосахаров и других соединений

Роль серина и глицина в образовании одноуглеродных групп.

Вопрос №41 Синтез мочевины, химизм, ферменты, энергетика, происхождение атомов азота в мочевине

Орнитиновый цикл:

1.Роль серина и глицина в образовании одноуглеродных групп.

2.Роль серина и глицина в образовании одноуглеродных групп.

3.Роль серина и глицина в образовании одноуглеродных групп.

4.Роль серина и глицина в образовании одноуглеродных групп.

5.Роль серина и глицина в образовании одноуглеродных групп.

В реакциях орнитинового цикла расходуются четыре макроэргических связи трёх молекул АТФ на каждый оборот цикла.Источник первого азота-аммиак. Аспартат — источник второго атома азота мочевины

Вопрос №42 Связь орнитинового цикла с циклом трикарбоновых кислот.

Взаимосвязь орнитинового цикла и общего пути катаболизма. Фумарат, образующийся в результате расщепления аргининосукцината, превращается в малат, который затем переносится в митохондрии, включается в ЦТК и дегидрируется с образованием оксалоацетата. Эта реакция сопровождается выделением 3 молекул АТФ, которые и компенсируют затраты энергии на синтез одной молекулы мочевины. ЦЦ Роль серина и глицина в образовании одноуглеродных групп.

ЦТК и орнитиновый цикл протекают в печени.

Вопрос№43 Нарушение синтеза и выведения мочевины. Гипераммониемия, происхождение

Нарушение реакций обезвреживания аммиака может вызвать повышение содержания аммиака в крови- гипераммониемию, что оказывает токсическое действие на организм. Причинами гипераммониемии могут выступать как генетический дефект ферментов орнитинового цикла в печени, так и вторичное поражение печени в результате цирроза, гепатита и других заболеваний. Известны пять наследственных заболеваний, обусловленных дефектом пяти ферментов орнитинового цикла

Дополнительные материалы:

ОБМЕН БЕЛКОВ — часть 3


Похожие статьи: