Посттрансляционные процессы. 1 страница

      Комментарии к записи Посттрансляционные процессы. 1 страница отключены

В ходе предыдущих этапов реализации наследственной информации обеспечивается синтез пептидной цепи, которая в большинстве случаев начинается с аминокислоты формилметионин и соответствует первичной структуре белковой молекулы. Последующие события заключаются в отщеплении формилметионина, в некоторых случаях осуществляется модифицирование пептида после трансляции, формируется вторичная и третичная структуры белка (иногда для некоторых белков, характеризующихся четвертичной структурой, осуществляется объединение одинаковых, либо различных пептидных цепей с образованием активно функционирующего белка).

В зависимости от того, каковы функции белка (ферменты, строительный материал, антитела и т.д), он принимает участие в обеспечении морфо-функциональных особенностей клетки (организма), т.е. в формировали определенных сложных признаков.

Это является завершающим этапом процесса реализации генетической информации.

У эукариот образование РНК происходит и в цитоплазме: в митохондриях и хлоропластах (у растений), обладающих собственной системой синтеза белка и собственной генетической информацией в виде ДНК — цитоплазматическая наследственность, однако, система белкового синтеза в митохондриях и пластидах аналогична таковой у прокариот и существенно отличается от белкового синтеза в ядре высших животных. Гены, расположенные в цитоплазме вне хромосом, называются плазмогенами. Ими объясняется особый тип наследования, при котором признак передается через цитоплазму яйцеклетки (по материнской линии). Уникальной остается родословная, по которой в семьях трех поколений родилось 72 девочки и ни одного мальчика. Предполагают, что мутацией митохондриальных генов объясняются некоторые пороки развития человека — Spina bifida (раздвоенный позвоночный столб), сращение нижних конечностей.

Цитоплазматическая наследственность.Благодаря работам А. Вейсмана и Т. Моргана теорию наследственности эукариотических организмов называют хромосомной. Этим подчеркивается факт размещения наследственного материала в хромосомах клеточного ядра. По мере развития генетики накапливались данные, необъяснимые с точки зрения исключительно ядерной локализации генов и свидетельствовавшие о возможности прямого участия в явлениях наследственности цитоплазмы. Цитоплазматическая наследственность обеспечивается генами, локализованными вне ядра клетки. Ей соответствует особый тип одностороннего наследования по материнской линии, при котором признак передается через цитоплазму яйцеклетки. Совокупность наследственных задатков цитоплазмы называется плазмоном, а сами задатки — плазмагенами. По материнскому типу наследуется устойчивость к стрептомицину у хламидомонад, направление завитка раковины улиток, пятнистость листьев и мужская стерильность некоторых растений. Уникальной остается родословная, согласно которой в семьях трех поколений родилось 72 девочки и ни одного мальчика. Это может быть объяснено цитоплазматической наследственностью, хотя допустимы и другие объяснения.

Плазмагены разнородны по своей природе. Их можно разделить на две группы: 1) гены ДНК-содержащих органелл клетки (митохондрии, хлоропласты); 2) инфекционные агенты или симбионты клетки (вирусы, плазмиды, эписомы). Плазмагены обоих групп сходны по своим свойствам с ядерными генами и осуществляют генетический контроль синтеза ряда важных ферментов, а, следовательно, и развития некоторых сложных признаков. Они способны к редупликации и случайным, устойчивым, передающимся в ряду поколений изменениям — точковым мутациям. В качестве примера рассмотрим плазмаге-ны митохондрий. Одна такая органелла содержит 4—5 кольцевых молекул ДНК, каждая длиной примерно в 15 000 пар нуклеотидов. За счет собственной генетической информации в митохондриях образуются тРНК, рибонуклеиновые кислоты и белки рибосом, некоторые ферменты аэробного энергетического обмена и структурные белки. ДНК митохондрий редуплицируется, вслед за чем происходит деление исходной органеллы на две дочерние. Предположительно мутациями митохондриальных генов объясняются такие пороки развития человека, как 5рта ЫШа (раздвоенный позвоночный столб), сращение нижних конечностей.

Генетический контроль структуры и функции митохондрий плазмагены обеспечивают во взаимодействии с генами хромосом ядра. Простой расчет показывает, что объем собственной наследственной информации митохондрии недостаточен для воспроизведения всей совокупности рибонуклеиновых кислот и белков органеллы. Многие белки, особенно ферментативные, включаются в структуру митохондрии, будучи синтезированы в цитоплазме на иРНК, поступившей из ядра. Описано явление генокопирования по ядерным и цитрплазматиче-ским генам. Так, к мужской стерильности растений приводят в одних случаях мутации ядерных генов, а в других — плазмагенов.

(23) Классификация генов. Другая группа структурных генов, обеспечивающих синтез некоторых белков-ферментов, в своем функционировании зависит различных регулирующих факторов и называется регулируемыми генами.Их активное функционирование, скорость и продолжительность транскрибирования могут регулироваться как генетическими факторами, так и факторами негенетической природы.

Генетическими факторами регуляции транскрипции являются гены-регуляторы и операторы. Гены-регуляторы определяют синтез белков-регуляторов, способных в активном состоянии соединяться с оператором, включающим или выключающим транскрипцию структурных генов. В зависимости от свойств белка-регулятора различают негативный и позитивный контроль транскрипции со стороны гена-регулятора. При негативном контроле белок-регулятор, соединяясь с оператором, прекращает (выключает) транскрипцию. Такой белок называется репрессором. При позитивном контроле белок-регулятор, соединяясь с оператором, включает транскрипцию. В таком случае продукт гена-регулятора называется апоиндуктором.

Таким образом, наряду со структурными генами с геноме имеются гены-регуляторы, которые, обеспечивая репрессию или депрессию структурных генов, регулируют процессы синтеза белка в клетке.

Наряду с генетическими факторами в регуляции экспрессии генов важная роль принадлежит факторам негенетической природы — эффекторам. К ним относятся вещества небелковой природы, расщепляемые или синтезируемые в клетке при участии различных ферментов.

В зависимости от того, как эффектор воздействует на активность генов, различают индукторы, включающие транскрипцию генов, и корепрессоры, выключающие ее. Действие эффектора заключается в его взаимодействии с белком-регулятором, при котором он либо активируется и может соединяться с оператором, либо инактивируется и теряет способность соединяться с оператором.

Таким образом, экспрессия генов является результатом регулирующего воздействия на процессы транскрипции как со стороны самого генома (гены-регуляторы и операторы), так и со стороны факторов негенетической природы.

(24) Регуляция экспрессии генов у прокориот.Изучение регуляции экспрессии генов на стадии транскрипции у прокариот привело к созданию в 1961 г. модели оперона (Жакоб и Мано). Оперон – это тесно связанная последовательность структурных генов, определяющих синтез группы ферментов для какой-либо одной из биохимических реакции.

Особенностью прокариот является транскрибирование иРНК со всех структурных генов оперона. Такая полицистронная иРНК в дальнейшем разрезается на фрагменты, соответствующие матрицам для синтеза отдельных ферментов. Цепи структурных генов оперона всегда предшествует промотор, узнаваемый РНК-полимеразой. У конститутивных генов этого достаточно для осуществления транскрипции. У регулируемых генов между промотором и структурными генами располагается оператор — последовательность нукдеотидов, которая узнается белком-регулягорбм (репрессором), находящимся в активном состоянии. Белок-репрессорпредставляет собой аллостерический белок, способный изменять свои биологические свойства при соединении с различными специфическими молекулами и обладает двумя высокочувствительными группами: одной из них он распознает оператор, другой — специфично связывает индуктор. Одновременно быть связанным с двумя молекулами он не может. Индуктор представляет низкомолекулярное вещество, которое связывается с репрессором и переводит его в неактивную форму, неспособную более связываться с оператором. Так, в Lас-системе индуктором является лактоза, после ассоциации с которой репрессор отсоединяетсяот оператора.

При отсутствии в среде лактозы активный репрессор, взаимодействуя с оператором, репрессирует гены А,В,С — транскрипции нет. Появление в среде лактозы инактивирует репрессор, он не соединяется с оператором и осуществляется транскрипция генов А, В, С, отвечающих за синтез ферментов, которые расщепляют лактозу.

Регуляция экспрессии генов у эукориот.У эукариот не установлено оперонной организации генов. Гены, определяющие синтез ферментов одной цепи биохимических реакций, могут быть рассеяны в геноме и очевино не имеют, как у прокариот, единой регулирующей системы. В связи с этим синтезируемые мРНК у эукариот моноцистронны, т.е. являются матрицами для отдельных пептидных цепей.

В настоящее время механизмы регуляции активности эукариотических генов интенсивно изучаются. Установлено, что регуляция транскрипции у эукариот является комбинационной, т.е. актвиность каждого гена регулируется большим спектром генов-регуляторов. У многих эукариотических генов, кодирующих белки и транскрибируемых РНК-полимеразой II, в ДНК имеется несколько областей, которые узнаются разными белками-регуляторами. Одной ю них является область, расположенная вблизи промотора. Она включает около 100 пар нуклеотидов, в том числе ТАТА-блок, располагающийся на расстоянии 25 пар нуклеотидов от точки начала транскрипции. Установлено, что для успешного присоединения РНК-полимеразы II к промотору необходимо предварительное соединение с ТАТА-блоком особого белка — фактора транскрипции — с образованием стабильного транскрипционного комплекса. Именно этот комплекс ДНК с белком узнается РНК-полимеразой II.

Другая область, играющая важную роль в регуляции активности эукариотических генов, располагается на большом расстоянии от промотора (до нескольких тысяч пар нуклеотидов) и называется ЭНХАНСЕЮМ (от англ. enhance — усиливать).

И энхансер, и препромоторный элемент эукариотических генов — это короткие последовательности нуклеотидов, которые связываются с соответствующими регулягорными белками. В результате взаимодействия этих белков происходит включение или выключение генов.

Для эффективной регуляции экспрессии генов у эукариот существуют мехзанизмы, работающие не только на стадии транскрипции, но и на других этапах этого процесса.

Связанная с экзон-интронной организацией генов необходимость процессинга, в том числе сплайсинга, делает возможным регуляцию этих процессов в ядре: используя один и тот же первичный транскрипт, можно обеспечить образование матриц для разных палтидов, вырезая из них разные последовательности или изменяя последовательности на 5/ и 3/ концах мРНК.

Транспорт зрелых мРНК из ядра в цитоплазму также регулируется: лишь небольшая часть РНК, транскрибируемая с генов, после сплайсинга покидает ядро. Значительное количество ее деградирует.

Существуют механизмы, обеспечивающие регуляцию процессов синтеза пептидных цепей. Они менее экономичны, но отличаются быстротой реагирования на изменения потребностей клетки в данном белке. Регуляция трансляции осуществляется на стадами инициации, когда блокируется присоединение к малой субъединице рибосомы тРНК, несущей формилметионин. В результате при наличии в цитоплазме иРНК трансляции на ней не происходит. Такая ситуация наблюдается, например, при отсутствии в цитоплазме гена, что ведет к выключению трансляции глобиновых цепей гемоглобина.

Регуляция процесса реализации наследственной информации может осуществляться и на стадии посттранслядионных изменений, когда происходит задержка в формировании активных молекул белка при наличии пептидных цепей. Например, для формирования активной формы инсулина из проинсулина должны вырезаться две субъединицы. Торможение этих процессов уменьшает выход конечного активного продукта.

(25) Генетическая инженерия.Генетическая (генная) инженерия — область молекулярной биологии и генетики, ставящая своей задачей конструирование генетических структур по заранее намеченному плану, создание организмов с новой генетической программой. Возникновение генетической инженерии стало возможным благодаря синтезу идей и методов молекулярной биологии, генетики, биохимии и микробиологии. Основные методы генной инженерии были разработаны в 60-70-х годах нашего века. Они включают три основных этапа:

• получение генетического материала (искусственный синтез гена или выделение природных генов);

• включение этих генов в автономно реплицирующуюся генетическую структуру (векторную молекулу) и создание рекомбинантной молекулы ДНК;

• введение векторной молекулы (с включенным в нее геном) в клетку-реципиент, где она встраивается в хромосомный аппарат. Экспериментальный перенос генов в другой геном называется ТРАНСГЕНЕЗОМ.

Для ХИМИЧЕСКОГО СИНТЕЗА необходимо иметь полностью расшифрованную последовательность нуклеотидов. Впервые в 1970 году индийским ученым Корана Г. (США) был осуществлен искусственный синтез гена. Он синтезировал последовательность нуклеотидов (77) в ДНК, специфическую для структуры гена транспортной аланиновой РНК в клетках пекарских дрожжей. Более двух лет затратили на этот синтез гена. Последовательность нуклеотидов в нити ДНК определялась по информационной РНК. Для транскрипция необходимо, чтобы фермент РНК-полимераза узнавала место промотора, где локализована точка инициации синтеза, и в этом месте садилась на матрицу.

Однако, химическим путем можно синтезировать небольшие по размеру гены прокариот, синтез сложных генов эукариот, состоящих из тысячи и более нуклеотидов, путем химического синтеза пока создать не удается.

Кроме того, химический синтез очень трудоемкий и для генной инженерии в настоящее время практически не используется. Наиболее успешным оказался ФЕРМЕНТАТИВНЫЙ СИНТЕЗ гена.

Центральная догма молекулярной генетики утверждает, что считка информации происходит в направлении: ДНКРНКбелок. Но ряд авторов, начиная с 1948 года, выступали с соображениями, что РНК может быть предшественником ДНК. Подобное наблюдается у онкогенных РНК — содержащих вирусов. С РНК-вируса, попавшего в клетку, синтезируется провирус (ДНК — копия РНК) с помощью фермента обратная транскриптаза (ревертаза), а сам процесс называется обратной транскрипцией. Этот фермент был открыт в 1970 году Теминым, Мазутани, Балтимором.

Ген, полученный путем ферментативного синтеза, может функционировать в бактериальной клетке, на нем синтезируется иРНК, а затем белок, таким путем под руководством академика В.А.Энгельгардга был получен ген, определяющий синтез фермента галактозидазы, введенный в фаг.

Следовательно, если иметь в пробирке выделенные молекулы иРНК, принадлежащие данному гену, то он может быть синтезирован с помощью фермента. Матрицей служит иРНК, ее выделяют, добавляют нуклеотиды, затравку, ферменты.

Важным достижением генной инженерии является синтез гена соматостатина, этот ген функционирует в микробной клетке.

Спонтанные и индуцированные мутации.Мутации делят на спонтанные и индуцированные. Спонтанными называют мутации, возникшие под влиянием неизвестных природных факторов, чаще всего как результат ошибок при репликации ДНК. Индуцированные мутации вызваны специально направленными воздействиями, повышающими мутационный процесс.

Наследственные различия у микроорганизмов, растений, животных и человека, в том числе наследственные болезни и уродства, появились в результате мутаций. Если спонтанные мутации — явление довольно редкое (частота—10-6—10-7), то применение мутагенных агентов значительно повышает частоту их.

Факторы, способные индуцировать мутационный эффект, получили название мутагенных. Установлено, что любые факторы внешней и внутренней среды, которые могут нарушить гомео-стаз, способны вызвать мутацию. Главнейшими мутагенами являются: химические соединения, различные виды излучений, биологические факторы.

Мутакинез.Химический мутагенез. Еще в 1934 г. М. Е. Лобашев отметил, что химические мутагены должны обладать тремя качествами: высокой проникающей способностью; свойством изменять коллоидное состояние хромосом; определенным действием на состояние гена или хромосомы.

Приоритет открытия химических мутагенов принадлежит советским исследователям. В 1933 г. В. В. Сахаров получил мутации путем действия йода, в 1934 г. М. Е. Лобашев — применяя аммоний. В 1946 г. советский генетик И. А. Рапопорт обнаружил сильное мутагенное действие формалина и эти-ленимина, а английская исследовательница Ш. Ауэрбах — иприта. Позже были открыты многие другие химические мутагены. Некоторые из них усиливают мутационный эффект в сотни раз по сравнению со спонтанным; они получили название супермутагенов (лат. зирег — сверх), т. е. оказывающих сверхмутагенное действие. Многие из супермутагенов, в частности использованные для получения высокоактивных штаммов микроорганизмов — продуцентов антибиотиков, открыл И. А. Рапопорт.

Химические мутагены используются для получения мутантных форм плесневых грибов, актиномицетов, бактерий, вырабатывающих в большом количестве пенициллин, стрептомицин и другие антибиотики. Химическими мутагенами повышена ферментативная активность грибов, применяемых для спиртового брожения. Разработаны десятки перспективных мутаций культурных растений.

В экспериментах мутации индуцируются разнообразными химическими агентами. Этот факт свидетельствует о том, что, по-видимому, и в естественных условиях подобные факторы также служат причиной появления спонтанных мутаций у различных химических веществ и даже некоторых лекарственных препаратов. Это говорит о необходимости изучения мутагенного действия новых фармакологических веществ, пестицидов и других химических соединений, все шире используемых в медицине и сельском хозяйстве.

Радиационный мутагенез. Индуцированные мутации, вызванные облучением, впервые были экспериментально получены советскими учеными Г. А. Надсоном и Г. С. Филипповым, которые в 1925 г. наблюдали мутационный эффект на дрожжах после воздействия на них ионизирующей радиации. В 1927 г. американский генетик Г. Меллер показал, что рентгеновы лучи могут вызвать множество мутаций у дрозофилы, а позже мутагенное воздействие рентгеновых лучей подтвердилось на многих объектах. В дальнейшем было установлено, что наследственные изменения обусловливаются также всеми другими видами проникающей радиации.

Для искусственных мутаций часто используются гамма-лучи, источником которых в лабораториях обычно является радиоактивный кобальт (60Со). В последнее время для индуцирования мутаций все шире применяются нейтроны, обладающие большой проникающей способностью. При этом возникают как разрывы хромосом, так и точ-ковые мутации. Изучение мутаций, связанных с действием нейтронов и гамма-лучей, представляет собой интерес по двум причинам. Во-первых, установлено, что генетические последствия атомных взрывов связаны прежде всего с мутагенным влиянием ионизирующей радиации. Во-вторых, физические методы мутагенеза применяются для получения ценных в хозяйственном отношении сортов культурных растений. Так, советские исследователи, используя методы воздействия физическими факторами, вывели стойкие к ряду грибных заболеваний и более урожайные сорта пшеницы и ячменя.

Одним из самых опасных последствий облучения является образование свободных радикалов ОН или НО2 из находящейся в тканях воды. Эти радикалы обладают высокой реактивной способностью и могут расщеплять многие органические вещества, в том числе нуклеиновые кислоты.

Другие мутагенные факторы. Первые исследователи мутационного процесса недооценивали роль факторов внешней среды в явлениях изменчивости. В начале XX в. некоторые исследователи даже считали, что внешние воздействия не имеют никакого значения для процесса мутирования. В дальнейшем зги представления были отвергнуты благодаря искусственному воспроизведению мутаций с помощью различных факторов внешней среды. В настоящее время можно предполагать, что нет таких факторов внешней среды, которое в какой-то мере не сказались бы на изменении наследственных свойств. Из фичических факторов на ряде объектов установлено мутагенное действие ультрафиолетовых лучей, фотонов света и температуры. Повышение температуры увеличивает число мутаций. Однако температура относится к числу тех агентов, в отношении которых у организмов существуют защитные механизмы, вследствие чего гомеостаз нарушается незначительно. В связи с этим температурные воздействия дают небольшой мутагенный эффект по сравнению с другими агентами.

Найдены биологические мутагены, к которым относятся вирусы и токсины ряда организмов, особенно плесневых грибов. В 1958 г. советский генетик С. И. Алиханян показал, что вирусы вызывают мутации У актиномицетов. Оказалось также, что вирусы вызывают мутации у растений и животных При этом мутагенным действием опладают не только те вирусы, к которым восприимчив организм, в котором они размножаются и вызывают заболевание, но и непатогенные для него вирусы. Таким образом, роль вирусов в природе заключается в том, что они являются не только возбудителями многих болезней растений, животных и чел, но и виновниками многих спонтанных мутаций.

(26) Комбинативная изменчивость.Комбинативная изменчивость. Комбинативная изменчивость связана с получением новых сочетаний генов в генотипе. Достигается это в результате трех процессов: а) независимого расхождения хромосом при мей-озе, б) случайного их сочетания при оплодотворении, в) рекомбинации генов благодаря кроссинговеру; сами наследственные факторы (гены) при этом не изменяются, но возникают их новые сочетания, что приводит к появлению организмов с другим генотипом и фенотипом.

Дарвин установил, что многие сорта культурных растений и породы домашних животных были созданы благодаря гибридизации существовавших ранее пород. Он придавал большое значение комбинативной изменчивости, считая, что наряду с отбором ей принадлежит важная роль в получении новых форм как в природе, так и в хозяйстве человека.

Комбинативная изменчивость широко распространена в природе. У микроорганизмов, размножающихся бесполым путем, появились своеобразные механизмы (трансформация и транс-дукция), приводящие к появлению комбинативной изменчивости. Все это говорит о большой значимости комбинативной изменчивости для эволюции.

Комбинативная изменчивость распространена в природе и может играть роль даже в видообразовании. Описаны виды цветковых растений и рыб, совмещающие признаки двух близких ныне существующих видов. Однако возникновение видов в результате только гибридизации — явление редкое.

К комбинативной изменчивости примыкает явление гетерозиса. Гетерозис (гр. heteroisis — видоизменение, превращение), или «гибридная сила», может наблюдаться в первом поколении при гибридизации между представителями различных видов или сортов. Проявляется он в форме повышенной жизнеспособности, увеличения роста и других особенностей. Ярко выражен гетерозис у кукурузы, гибридизация которой дает значительный экономический эффект.

Мутационная изменчивость.Мутацией (лат. mutatio—перемена) называется изменение, обусловленное реорганизацией воспроизводящих структур, изменением ее генетического аппарата. Этим мутации резко отличаются от модификаций, не затрагивающих генотипа особи. Мутации возникают внезапно, скачкообразно, что иногда резко отличает организм от исходной формы.

Растениеводам и животноводам такие изменения были известны давно. Ряд наследственных изменений описал Дарвин в труде «Изменение домашних животных и культурных растений» (1868). Мутационной изменчивости посвятил свои работы С. И. Коржинский (1899) и Г. де Фриз (1901). Последнему принадлежит термин «мутация».

В настоящее время известны мутации у всех классов животных, растений и вирусов. Существует много мутаций и у человека. Именно мутациями обусловлен полиморфизм человеческих популяций: различная пигментация кожи, волос, окраска глаз, форма носа, ушей, подбородка и т. д. В результате мутаций появляются и наследственные аномалии в строении тела, и наследственные болезни человека.С мутационной изменчивостью связана эволюция— процесс образования новых видов, сортов и пород. По характеру изменений генетического аппарата различают мутации, обусловленные: а) изменением числа хромосом (геномные) б) изменением структуры хромосом (хромосомные аберрации); в) изменением молекулярной структуры гена (генные, или точковые мутации).

Хромосомные мутации. Возникают и результате перестройки хромосом. Они являются следствием разрыва хромосомы, приводящего к образованию фрагментов, которые в дальнейшем воссоединяются, но при этом нормальное строение хромосомы не восстанавливается. Различают четыре основных типа хромосомных аберраций: нехватки, удвоения (дупликации), инверсии, транслокации.

Нехватки возникают вследствие потери хромосомой того или иного участка. Нехватки в средней части хромосомы приводят организм к гибели, утрата незначительных участков вызывает изменение наследственных свойств. Так, при нехватке участка одной из хромосом у кукурузы ее проростки лишены хлорофилла.

Удвоение (дупликация) связано с включением лишнего, дублирующего участка хромосомы. Это также ведет к проявлению новых признаков. Так, у дрозофилы ген полоско-видных глаз (вмэсто круглых) обусловлен удвоением участка в одной из хромосом.

Инверсии наблюдаются при разрыве хромосомы и переворачивании оторвавшегося участка на 180°. Если разрыв произошел в одном месте, оторвавшийся фрагмент прикрепляется к хромосоме противоположным концом, если же в двух местах, то средний фрагмент, перевернувшись, прикрепляется к местам разрыва, но другими концами. Н. П. Дубинин установил, что инверсии широко распространены, в частности у дрозофил, взятых из природы, и, по-видимому, могут играть роль в эволюции видов.

Транслокации возникают в тех случаях. когаа участок хромосомы из одной пары прикрепляется к негомологичной хромосоме, т. е. хромосоме из другой пары Транслокачия участка одной из хромосом (21-й) известна у человека; оно может быть причиной болезни Дауна Большинство крупных хромосомных аберраций в зиготах у человека приводит к тяжелым аномалиям, несовместимым с жизнью, либо к гибели зародышей еще во время внутриутробного развития.

Полиплоидия.Это увеличение диплоидного числа хромосом путем добавления целых хромосомных наборов в результате нарушения мейоза. Вспомним, что половые клетки имеют гаплоидный набор хромосом (л), а для зигот и всех соматических клеток характерен диплоидный набор (2л). У полиплоидных форм отмечается увеличение числа хромосом, кратное гаплоидному набору: Зn — триплоид, 4n — тетраплоид, 5n — пентаплоид, 6n — гексаплоид и т. д. По-видимому, эволюция ряда цветковых растений шла путем полиплоидизации. Культурные растения в своем большинстве— полиплоиды.

Формы, возникающие в результате умножения хромосом одного генома, носят название автоплоидных. Однако известна и другая форма полиплоидии — аллоплоидия, при которой умножается число хромосом двух разных геномов. Аллополиплоиды искусственно получены при гибридизации ряда видов растений и животных. Так, Г. Д. Карпеченко создал аллополиплоидный гибрид редьки и капусты. В данном случае каждый исходный вид имеет 18 хромосом, а гибридный — 36, так как является аллотетраплоидом.

Полиплоидные формы известны и у животных. По-видимому, эволюция некоторых групп простейших, в частности инфузорий и радиолярий, шла также путем полиплоидизации. У некоторых многоклеточных животных полиплоидные формы удалось создать искусственно (тутовый шелкопряд).

Гетероплоидия.В результате нарушения мейоза и митоза число хромосом может изменяться и становиться не кратным гаплоидному набору. Явление, когда какая-либо из хромосом, вместо того чтобы быть парной, оказывается в тройном числе, получило название трисомии. Если наблюдается трисомия по одной хромосоме, то такой организм называется трисомиком и его хромосомный набор равен 2n + 1. Трисомия может быть по любой из хромосом и даже по нескольким. Двойной трисомик имеет набор хромосом 2n + 3 тройной — 2лn + 3 и т.

Явление трисомии впервые описано у дурмана. Известна трисомня и у других видов растений и животных, а также у человека. Трисомиками являются, например, люди с синдромом Дауна. Трисомики чаще всего либо нежизнеспособны, либо отличаются пониженной жизнеспособностью и рядом патологических признаков.

Явление, противоположное трисомии, т. е. утрата одной хромосомы из пары в диплоидном наборе, называется моносомией, организм же—моносомиком; его кариотип — 2n— 1. При отсутствии двух различных хромосом организм является двойным моносомиком (2n — 2). Если из диплоидного набора выпадают обе гомологические хромосомы, организм называется ну-лисомиком. Он, как правило, нежизнеспособен.

Дополнительные материалы:

Регуляторные гены управляют структурными. Генотип как целостная система


Похожие статьи: