Полигенное наследование признаков

      Комментарии к записи Полигенное наследование признаков отключены

Кумулятивная полимерия. Значительная часть признаков у эукариот, наследуемых по-лигенно, находится под контролем не двух-трех, а большего числа генов (их количество пока еще трудно определить). При моногенном типе наследования в моногибридном скрещивании один ген проявляется в двух альтернативных состояниях без переходных форм. Такие признаки относятся к качественным, при их анализе, как правило, не проводится никаких измерений. При неаллельном взаимодействии двух несцепленных генов даже при сохранении менделевского отношения 9:3:3:1 фенотип первого поколения гибридов зависит от действия обоих генов. Однако наследование качественных признаков может определяться взаимодействием трех и более генов.

При этом каждый из этих генов имеет свою долю влияния на развитие признака. Примером может служить наследование красной и белой окраски зерен пшеницы в опытах шведского генетика Нильсона-Эле. Результаты этих опытов были опубликованы в 1909 г.

При скрещивании сорта пшеницы, зерна которой имели темно-красную окраску, с сортом, имеющим белые зерна, гибриды первого поколения имели красную окраску более светлых тонов. Во втором поколении получилось такое соотношение по фенотипу: на 63 окрашенных зерна с различными оттенками красного цвета приходилась 1 белое зерно (неокрашенное). Эти результаты были объяснены Нильсоном-Эле следующим образом. Темно-красная окраска зерен пшеницы обусловлена действием трех пар доминантных генов, а белая — трех пар рецессивных, при этом по мере увеличения числа доминантных генов окраска становится более интенсивной. Обозначим доминантные аллели трех генов, локализованных в разных хромосомах, прописными буквами А1 А2 А3 а рецессивные — строчными а1 а1 а3, тогда генотипы исходных форм будут: А1А1 А2А2 А3А3 x а1я1 а2а2 a33a.

Окраска зерен у гибридов первого поколения A1a1 A2a2 A3a3 при наличии трех доминантных аллелей будет промежуточной светло-красной. При скрещивании гибридов первого поколения A1a1 A2a2 A3a3 x A1a1 A2a2 A3a3 у каждого из гибридов образуется по 8 типов гамет, поэтому во втором поколении ожидается расщепление в 64-х долях (8 х 8). Среди 63/64 растений с окрашенными зернами интенсивность окраски усиливается по мере увеличения числа доминантных аллелей различных генов в генотипе. Видимо, каждый доминантный ген способствует увеличению количества синтезированного пигмента, и в этом смысле такой признак можно отнести к количественным.

Тип аддитивного действия генов, каждый из которых оказывает свою, часто небольшую, долю влияния на признак, называется кумулятивной полимерией. Используя решетку Пеннета, можно подсчитать частоты доминантных генов среди генотипов второго поколения. Для этого в каждой из 64 клеток вместо генотипа записывается число присутствующих в нем доминантных аллелей. Определив частоты доминантных аллелей, можно убедиться, что генотипы с числом доминантных генов 6,5,4,3, 2, 1,0 встречаются 1,6,15,20,15,6,1 раз соответственно. Эти данные представлены в виде графика на рисунке. На горизонтальной оси указано число доминантных генов в генотипе, а на вертикальной — частоты их встречаемости. С увеличением числа генов, определяющих один признак, этот график приближается к идеальному нормальному распределению.

Полигенное наследование признаков

Такого типа графики характерны для количественных признаков, таких как рост, вес, длительность жизни, яйценоскость и других признаков, показатели которых можно измерить.

К количественным относятся признаки, варьирующие более или менее непрерывно от одной особи к другой, что позволяет распределить особей по классам в соответствии со степенью выраженности признака. На рисунке приведен пример распределения по росту у мужчин. Эта выборка разделена на 7 классов с 5 см-интервалом. Мужчины со средним ростом (171-175 см) составляют большую часть выборки. С наименьшей частотой встречаются мужчины, которые включены в класс с ростом 156—160 см и 186—190 см. С увеличением выборки и с уменьшением классового интервала график может приблизиться к нормальному распределению по росту.

Фенотипическая изменчивость без разрывов в проявлении, представленная на графике нормального распределения признака, называется непрерывной. Непрерывная изменчивость количественных признаков зависит от двух причин: 1) от генетического расщепления по большому числу генов, 2) от влияния среды, как причины модификационной изменчивости.

Впервые датский генетик Иогансен показал, что непрерывная изменчивость такого количественного признака как масса бобов фасоли Phaseolus vulgaris зависит как от генетических, так и средовых факторов. Путем инбридинга в течение ряда поколений он вывел несколько чистых (гомозиготных) линий, различающихся по средней массе бобов. Например, средняя масса бобов в линии 1 была 642 мг, в линии 13 —454 мг, в линии 19 — 351 мг. Далее Иоган-сен вел отбор крупных и мелких бобов в каждой линии с 1902 по 1907 г. Вне зависимости от массы родительских семян средняя масса бобов после 6 лет отбора была такой же, как и в исходной линии. Так влинии № 13 при массе родительских семян от 275 мгдо 575 мг средняя масса семян в потомстве сохранилась на том же уровне ±450 мг. При этом в каждой линии масса бобов варьировала от минимальных до максимальных значений, а наиболее многочисленным был класс со средней массой, что характерно для количественных признаков. Отбор в чистых линиях оказался невозможен .

Еще один пример, в 1977 г. Д.С. Билева, Л.Н. Зимина, А.А. Малиновский изучали влияние генотипа и среды на продолжительность жизни двух инбредных линий Drosophila melanogaster. Путем инбридинга и отбора были выведены две линии № 5 и № 3, четко различающиеся по длительности жизни. Продолжительность жизни определялась на трех вариантах корма: полноценном (дрожжи, манная крупа, сахар, агар-агар), обедненном (манная крупа, сахар, агар-агар) и сахарном (сахар, агар-агар). Обеднение состава корма приводило к уменьшению длительности жизни. Продолжительность жизни самок 5-й линии на сахарном корме (в днях) снизилась с 58+2,1 до 27,2±1,8, а самцов с 63,7±2,9 до 34,8±1,5, т.е. оказалась примерно в 2 раза меньше, чем на полноценном корме. Такая же закономерность была характерна и для самок и самцов 3-й линии. Длительность жизни самок этой линии снизилась с 50,7±],9 до 24,3±1,2, а самцов с 32,9+2,9 до 21,6±1,5 дня. При этом гистограмма, отражающая изменчивость по данному признаку на полноценном корме, близка к гистофамме представленной на рисунке, я, а на обедненном и сахарном наблюдается ассиметричное распределение со сдвигом средней величины в сторону уменьшения длительности жизни.

Некумулятивная полимерия. Наряду с кумулятивной (аддитивной) полимерией известны случаи наследования по типу некумулятивной (неаддитивной) полимерии, когда характер проявления признака не меняется в зависимости от числа доминантных полимерных генов. Так у кур оперенность ног определяется доминантными аллелями двух генов A1 и А2:

Р А1А1 А2А2 х а1а1a2a2
оперенная неоперенная оперенные

F2 9 А1_А2_; 3 А1_ а2а2:; 3 a1a1 A2_; 1 а1а1 a2a2
оперенные (15) неоперенные (1)

В F2 среди 15/16 гибридов с оперенными ногами есть такие, которые имеют четыре доминантных аллеля (А1А1 А2А2), три (А1А’1 А2а2), два (А1а1 А2а2) или всего один (А1а1 а2а2), характер оперенности ног в этих случаях один и тот же.

Главные гены в системе полигенов. Среди генов, влияющих на количественный признак, может оказаться «сильный» или главный ген, и более «слабые» гены. Действие главного гена иногда настолько существеннее действия других генов, что признак, кодируемый им, наследуется по мекделевским законам. Изменчивость одного и того же признака может находиться под контролем как одного главного гена, так и полигенов. Например, карликовость у человека в случае ахондроплазии обусловлена специфическим главным геном, в то время как изменчивость по росту в нормальной популяции индивидов является примером полигенной изменчивости. Гены, действие которых заметно сильнее действия других генов на этот признак, можно изучать по отдельности от действия других генов. С другой стороны, один и тот же ген вследствие плейотропного действия, может оказывать сильное влияние на один признак и менее значительное на другой признак. К тому же к главным генам могут быть отнесены те, которые определяют признаки, наследуемые по законам Менделя, без их отношения к системе полигенов. Подразделение генов на главные и неглавные не всегда обосновано, хотя бесспорно, что их роль в определении признака может быть различна.

Широко распространенные болезни человека, например, артериальная гипертензия, ишемическая болезнь сердца, бронхиальная астма, язвенная болезнь желудка, наследуются полигенно. При этом тяжесть заболевания зависит не только от совокупного действия множества генов, но и от провоцирующих средовых факторов

Вопрос 38 (Наследования группы крови и резус-фактора)

Полигенное наследование признаков

Группа крови — врожденное свойство человека и неизменна в течение всей его жизни (онтогенеза).

К настоящему времени известно несколько систем группы крови. Каждая из этих систем наследственно обусловлена. Невозможно найти двух людей (кроме однояйцевых близнецов), которые имели бы одинаковые группы крови по всем системам. Это явление используется в судебной медицине. В клинической медицине для переливания крови необходимо знание группы крови системы АВО (I—IV группы крови) и резус-фактора.

Система групп крови АВО открыта в начале XX века австралийским ученым К. Ландштейнером при изучении поведения эритроцитов (красных кровяных телец) в сыворотке (жидкой части) крови разных людей. Ученый обратил внимание на тот факт, что эритроциты в сыворотке крови одних людей распределяются равномерно, а других — склеиваются. Используя разные комбинации эритроцитов и сывороток, он обнаружил три группы крови (I—III), а существование IV группы (более редкой) было установлено позднее. Частота встречаемости групп крови системы АВ0 в разных популяциях человека различна.

Обладание одной из четырех групп крови определяется парой генов, пришедших по одному от каждого из родителей. Каждый ген может быть в одной из трех аллелей (функциональных состояний) — А, В, О. Аллели А и В доминируют над О, но, оказавшись вместе в одном организме, А и В проявляют совместное действие (кодоминирование) и обусловливают наличие IV группы крови.

Многие считают, что у родителей и детей группа крови всегда одна и та же. Это заблуждение. Установлено, что совпадение здесь имеет место далеко не во всех случаях.

Фенотипическими (то есть биохимическими, морфологическими или другими методами) можно определить четыре группы крови: 1(О), II(А), III (В) и IV(АВ). Фенотипы I и IV групп совпадают с их генотипами.

Генотипы же ВВ и ВО (для III группы крови), АА и АО (для II группы) без знания групп крови родителей различать невозможно.

Рассмотрим такой пример. Двое мужчин имеют II группу крови, а их жены — I. В этом случае у одной супружеской пары могут родиться двое детей со II (или с I) группой крови, а у другой пары возможен один ребенок с I, а другой — со II группой крови. I группа крови новорожденному гарантирована только в том случае, если оба родителя имеют эту группу. Если же у обоих родителей II или III группа крови, то их дети, кроме родительской, могут иметь и I группу крови. В случае, когда у родителей II и III группы крови (например, у матери — II, у отца —III),их дети могут обладать I—IV группами. У родителей с I и IV группами крови (например, у матери — I, у отца — IV) дети будут иметь II или III группу. Правда, недавно в специальной литературе появилось описание нескольких японских семей, у которых родители имели I и IV группы крови, а дети — IV. Такие семьи представляют большой научный интерес, а «неправильное» наследование IV группы крови тщательно исследуется.

!Присутствие генов А и В обусловливает наличие в эритроцитах антигенов А и В, а их отсутствие приводит к появлению антител А и В в сыворотке крови. Если антиген А, содержащийся в эритроцитах, встречается с антигеном А, содержащимся в сыворотке, то происходит склеивание эритроцитов. В норме такого не происходит, так как в крови нет антител, способных склеивать собственные эритроциты (антигены).

Но около 5% зигот (оплодотворенных яйцеклеток) погибает, а в среднем 1 % новорожденных имеют гемолитическую болезнь из-за несовместимости матери и ребенка по группам крови системы АВ0. Если, например, ребенок имеет генотип 1А1°, а мать 1В1°, то у ребенка есть антиген А, а у матери — антитело А. Последние проникают в кровь плода и склеивают, а затем и разрушают эритроциты, обусловливая этим гемолитическую болезнь. Ученые предполагают, что существует специальная генетическая система защиты плаценты, которая нейтрализует антитела матери до их попадания в кровь плода.

В 1940 г. К. Ландштейнер и А. С. Винер обнаружили в эритроцитах человека совершенно новый антиген, названный ими резус-фактором (Rh). Резус-фактор присутствует в крови 85% людей, а 15% лиц этого фактора не содержат.

Система антигенов резус-фактора представлена 6 основными антигенами. Образование резус-антигенов контролируется тремя парами ал-лельных генов: Dd, Cc, Ее, которые расположены на двух хромосомах. Каждая из хромосом способна нести только 3 гена из 6, причем лишь 1 ген из каждой пары — D или d, С или с, Е или е. Гены Dnd, Сие, Еие являются по отношению к друг другу аллельными. В последнее время было доказано, что аллельного гена d не существует.

Наиболее активным из всех антигенов является Rh0(D). В зависимости от его наличия или отсутствия кровь людей делят на резус-положительную (Rh+) или резус-отрицательную (Rh-).

Указанные 6 антигенов резус встречаются в эритроцитах в виде одного из 18 возможных сочетаний. Фенотипически каждый человек содержит 5, 4 или 3 антигена резус в зависимости от количества генов, по которым он гомозиготен. Однако генотипическая формула изображается шестью буквами, например cDE/CDe, обозначающими 3 гена резус, унаследованных с хромосомой одного из родителей, 3 — с хромосомой другого.

Иначе подходят к оценке резус-принадлежности лиц, являющихся донорами. Требуется дополнительное исследование крови доноров по факторам rh и rh. Резус-отрицательными могут быть только доноры, в крови которых отсутствуют все три антигена (Rh0, rh, rh). Такой подход к оценке резус-принадлежности доноров позволяет исключить возможность сенсибилизации реципиента к любому из трех основных антигенов: Rh(D), rh(C), rh(E).

В повседневной практике переливания крови ограничиваются опреАнтигены резус относят к липопротеидам. Они являются очень активными и способны вызывать образование иммунных антител. Резус-антитела, являясь иммунными (неполными, моновалентными, блокирующими), характеризуются способностью фиксироваться к резус-положительным эритроцитам, не вызывая их склеивания. Они агглютинируют эритроциты только в присутствии коллоидных растворов, протеолитических ферментов или под действием специально приготовленной антиглобулиновой преципитирующей сыворотки. Неполные антитела относят к классу иммуноглобулинов IgG.

Наличие резус-антигена выявляется у человеческого плода начиная с 5-8 недели и хорошо выражено у 3-4-месячного эмбриона.

Существование антигенов системы резус в эритроцитах человека является физиологическим, антител к этим антигенам в организме нет. Образование иммунных антител происходит при поступлении в организм человека чужеродного ему изоантигена. У сенсибилизированных людей антитела анти-Rh содержатся не только в крови, но и в экссудате, транссудате, моче, слезе и других средах.

Вопрос 39( Взаимодействие неаллельных генов. Комплементарность, эпистаз ,полимерия)

Многие признаки формируются при участии нескольких неаллельных генов, взаимодействие между которыми отражается на формировании фенотипа. Описаны три основных типа взаимодействия неаллельных генов: комплементарность, эпистаз (для качественных признаков) и полимерия (для количественных признаков).

Комплементарность. Впервые взаимодействие неаллельных генов было обнаружено в начале 20-го столетия при анализе наследования формы гребня у кур. Разные породы кур (леггорны, виандоты, европейские, малайские) имеют соответственно листовидный, розовидный, гороховидный и ореховидный гребни.

В результате скрещивания кур, имеющих розовидный и гороховидный гребни, в потомстве первого поколения (Fj) возникает новая ореховидная форма гребня (новая форма гребня, возникает из-за взаимодействия генов А и В). Скрещивание гибридов Fi приводит к следующим результатам во втором поколении (Fi).

Впоследствии такой тип взаимодействия неаллельных генов, при котором совместно присутствующие в генотипе организма неаллельные гены обусловливают развитие нового признака, был назван компле-ментарностью. К комплементарным относятся такие гены, которые при совместном действии в генотипе в гомо- (ААВВ) или гетерозиготном (А-В-) состоянии обусловливают развитие нового признака. Присутствие доминантных аллелей двух генов А и В у 9/16 кур второго поколения ведёт к образованию нового фенотипа — ореховидного гребня. Действие же каждого гена в отдельности (А-вв или ааВ-) ведёт к воспроизведению признака лишь одного из скрещиваемых родителей.

У человека по типу комплементарности взаимодействуют доминантные неаллельные гены М и R. Образование чёрного пигмента меланина контролирует ген М, который представлен в популяциях людей тремя аллелями: М8, MBw, MBd. Доминантный аллель (R2) второго гена контролирует синтез красного пигмента. Сочетание аллелей названных генов обусловливает весь спектр пигментации волос у человека. Исключение составляют альбиносы, гомозиготные по гену альбинизма, который локализован в ином локусе и вызывает полное отсутствие синтеза пигмента в организме.

Противоположным комплементарности типом взаимодействия неал-лельных генов является, по своей сути, эпистаз. Под эпистазом понимают подавление одним геном действия другого неаллельного гена. Различают рецессивный эпистаз (ааВВ) — когда эпистатируют рецессивные аллели, и доминантный эпистаз (ААВВ, или ААвв). Явление эпистаза открыто при анализе наследования масти лошадей (рис. 65). Известно, что вороная окраска определяется доминантным аллелем В, рыжая — рецессивным аллелем Ъ, доминантный аллель С обусловливает из-за раннего поседения волоса серую масть. Аллель С контролирует нормальное развитие и пигментацию волос. Гомозиготы и гетерозиготы по аллелю С всегда будут серыми из-за седины, независимо от того, какие аллели гена В будет содержать генотип лошади:

Это расщепление выводится из расщепления 9:3:3:1, поскольку 3/16 потомков, имеющих генотип ЪЪС-, по фенотипу будут также серые и в сумме с 9/16 дадут 12/16. Подавляющий ген называется эпистатическим (эпистазирующим) или геном-супрессором, а подавляемый ген — гипо-статическим геном. Эпистаз наиболее характерен для генов, участвующих в регуляции работы структурных генов в онтогенезе и контролирующих процессы в иммунной системе человека.

Известно немало примеров эпистатического взаимодействия локусов у человека, приводящих к тому, что тот или иной доминантный аллель у некоторых индивидуумов не получает фенотипического выражения. По-

добным примером может послужить полидактилия, контролируемая, как правило, доминантным аллелем. Иногда она встречается у детей «совершенно здоровых» родителей (у последних действие данного аллеля, вероятнее всего, подавлялось другими генами).

Эпистаз и комплементарность характеризуют наследование альтернативных признаков, т.е. различающихся качественно. В 1908 году шведский генетик Г. Никольсон-Эле, скрещивая пшеницу с красными и белыми зернами, обнаружил в ряде случаев в потомстве F2 расщепление 15:1, т.е. 15 зёрен оказывались красными и одно неокрашенным. Последующий анализ в F3 показал, что дальнейшее расщепление отсутствовало только у растений с наиболее красной и с чисто белой окраской. В результате анализа же промежуточных форм выявилось, что красная окраска контролируется двумя доминантными неаллельными генами. Интенсивность окраски определяется числом доминантных аллелей, присутствующих в генотипе. Неаллелъные гены такого типа были названы полимерными. Поскольку эти гены влияют на один и тот же признак, было принято обозначать их одной латинской буквой с указанием индекса А}, А2, А3 и т.д.

Следовательно, исходные родительские формы, давшие в опытах Г. Нильсона-Эле расщепление 15:1, имели генотипы А1А1А2А2 и а/Я/а^. Гибрид Fj обладал генотипом AjaiA2a2, а в потомстве F2 развились зерна с разным числом доминантных генов. Наличие всех четырёх доминантных аллелей генов окраски А1А1А2А2 у 1/16 растений определяли самую интенсивную окраску зерна, 4/36 всех зёрен F2 имели три доминантных аллеля (AiA^ai), 6/16 — два доминантных аллеля (A\aiA2a2), 4/16 — один аллель (Aja/a2a2). Эти генотипы определяли промежуточные типы окраски, переходные между интенсивно красной и белой. Гомозиготная по обоим рецессивным генам (aia^ai) 1/16 всех зёрен оказалась неокрашенной.

По типу полимерных генов наследуется пигментация кожи у человека. Например, в потомстве представителей европеоидной и австрало-негроидной рас могут родиться мулаты с промежуточной интенсивностью пигментации кожи:

Полимерия бывает двух типов:

а) кумулятивная полимерия, когда число доминантных аллелей в генотипе организма влияет на степень выраженности данного признака (проиллюстрирована выше);

б) некумулятивная полимерия, при которой не имеет значения количество доминантных аллелей в генотипе, а важно только их присутствие.

Комплемента?рность (в химии, молекулярной биологии и генетике) — взаимное соответствие молекул биополимеров или их фрагментов, обеспечивающее образование связей между пространственно взаимодополняющими (комплементарными) фрагментами молекул или их структурных фрагментов вследствие супрамолекулярных взаимодействий (образование водородных связей, гидрофобных взаимодействий, электростатических взаимодействий заряженных функциональных групп и т. п.).

Взаимодействие комплементарных фрагментов или биополимеров не сопровождается образованием ковалентной химической связи между комплементарными фрагментами, однако из-за пространственного взаимного соответствия комплементарных фрагментов приводит к образованию множества относительно слабых связей (водородных и ван-дер-ваальса) с достаточно большой суммарной энергией, что приводит к образованию устойчивых молекулярных комплексов.

Вместе с тем, следует отметить, что механизм каталитичекой активности ферментов определяется комплементарностью фермента и переходного состояния либо промежуточного продукта катализируемой реакции — и в этом случае может происходить обратимое образование химической связи.

Эпистаз

Эписта?з — взаимодействие генов, при котором активность одного гена находится под влиянием другого гена (генов), неаллельного ему. Ген, подавляющий фенотипическиепроявления другого, называется эпистатичным; ген, чья активность изменена или подавлена, называется гипостатичным.

Примеры эпистатического влияния тесно связанных генов на приспособленность можно обнаружить в супергенах и главном комплексе гистосовместимости. Эффект может проявляться как напрямую — на уровне генов (при этом продукт эпистатичного гена предотвращает транскрипцию гипостатичного), так и на уровне фенотипов.

Полимерия

Полимери?я — взаимодействие неаллельных множественных генов, однонаправленно влияющих на развитие одного и того же признака; степень проявления признака зависит от количества генов. Полимерные гены обозначаются одинаковыми буквами, а аллели одного локуса имеют одинаковый нижний индекс.

Полимерное взаимодействие неаллельных генов может быть кумулятивным и некумулятивным. При кумулятивной (накопительной) полимерии степень проявления признака зависит от суммарного действия нескольких генов. Чем больше доминантных аллелей генов, тем сильнее выражен тот или иной признак. Расщепление в F2 по фенотипу при дигибридном скрещивании происходит в соотношении 1:4:6:4:1, а в целом соответствует третьей, пятой (при дигибридном скрещивании), седьмой (при тригибридном скрещивании) и т.п. строчкам втреугольнике Паскаля.

При некумулятивной полимерии признак проявляется при наличии хотя бы одного из доминантных аллелей полимерных генов. Количество доминантных аллелей не влияет на степень выраженности признака. Расщепление в F2 по фенотипу при дигибридном скрещивании — 15:1.

Пример полимерии — наследование цвета кожи у людей, который зависит (в первом приближении) от четырёх генов с кумулятивным эффектом.

Вопрос 40(Генотип ,геном ,фенотип.. Фенотип как результат реализации наследственной информации в определенных условиях среды.. Взаимодействие аллелей в детерминации признаков: доминирование, промежуточное проявление, рецессивность, кодоминирование)

Геноти?п — совокупность генов данного организма, которая, в отличие от понятий генома и генофонда, характеризует особь, а не вид (ещё отличием генотипа от генома является включение в понятие «геном» некодирующих последовательностей, не входящих в понятие «генотип»). Вместе с факторами внешней среды определяет фенотип организма.

Обычно о генотипе говорят в контексте определенного гена, у полиплоидных особей он обозначает комбинацию аллелей данного гена (см. гомозигота, гетерозигота). Большинство генов проявляются в фенотипе организма, но фенотип и генотип различны по следующим показателям:

1. По источнику информации (генотип определяется при изучении ДНК особи, фенотип регистрируется при наблюдении внешнего вида организма).

2. Генотип не всегда соответствует одному и тому же фенотипу. Некоторые гены проявляются в фенотипе только в определённых условиях. С другой стороны, некоторые фенотипы, например, окраска шерсти животных, являются результатом взаимодействия нескольких генов по типу комплементарности

Гено?м — совокупность наследственного материала, заключенного в гаплоидном наборе хромосом клеток данного вида организмов.

Термин «геном» был предложен Гансом Винклером в 1920 г. для описания совокупности генов, заключённых в гаплоидном наборе хромосом организмов одного биологического вида. Первоначальный смысл этого термина указывал на то, что понятие генома в отличие от генотипа является генетической характеристикой вида в целом, а не отдельной особи. С развитием молекулярной генетики значение данного термина изменилось. Известно, что ДНК, которая является носителем генетической информации у большинства организмов и, следовательно, составляет основу генома, включает в себя не только гены в современном смысле этого слова. Большая часть ДНК эукариотических клеток представлена некодирующими («избыточными») последовательностями нуклеотидов, которые не заключают в себе информации о белках и РНК.

Генетическая информация в клетках содержится не только в хромосомах ядра, но и во внехромосомных молекулах ДНК. У бактерий к таким ДНК относятся плазмиды и некоторые умеренные вирусы, в клетках эукариот — это ДНК митохондрий, хлоропластов и других органоидов клеток (См. плазмон). Объёмы генетической информации, заключённой в клетках зародышевой линии (предшественники половых клеток и сами гаметы) и соматических клетках, в ряде случаев существенно различаются. В онтогенезе соматические клетки могут утрачивать часть генетической информации клеток зародышевой линии, амплифицировать группы последовательностей и (или) значительно перестраивать исходные гены.

Следовательно, под геномом организма понимают суммарную ДНК гаплоидного набора хромосом и каждого из внехромосомных генетических элементов, содержащуюся в отдельной клетке зародышевой линии многоклеточного организма. В определении генома отдельного биологического вида необходимо учитывать, во-первых, генетические различия, связанные с полом организма, поскольку мужские и женские половые хромосомы различаются. Во-вторых, из-за громадного числа аллельных вариантов генов и сопутствующих последовательностей, которые присутствуют в генофонде больших популяций, можно говорить лишь о некоем усреднённом геноме, который сам по себе может обладать существенными отличиями от геномов отдельных особей. Размеры геномов организмов разных видов значительно отличаются друг от друга, и при этом часто не наблюдаетсякорреляции между уровнем эволюционной сложности биологического вида и размером его генома

Феноти?п (от греческого слова phainotip — являю, обнаруживаю) — совокупность характеристик, присущих индивиду на определённой стадии развития. Фенотип формируется на основе генотипа, опосредованного рядом внешне средовых факторов. У диплоидныхорганизмов в фенотипе проявляются доминантные гены.

Фенотип — совокупность внешних и внутренних признаков организма, приобретённых в результате онтогенеза (индивидуального развития).

Несмотря на кажущееся строгое определение, концепция фенотипа имеет некоторые неопределенности. Во-первых, большинство молекул и структур кодируемых генетическим материалом, не заметны во внешнем виде организма, хотя являются частью фенотипа. Например, именно так обстоит дело с группами крови человека. Поэтому расширенное определение фенотипа должно включать характеристики, которые могут быть обнаружены техническими, медицинскими или диагностическими процедурами. Дальнейшее, более радикальное расширение может включать приобретенное поведение или даже влияние организма на окружающую среду и другие организмы. Например, согласно Ричарду Докинзу, плотину бобров также как и их резцы можно считать фенотипом генов бобра.[1]

Фенотип можно определить как «вынос» генетической информации навстречу факторам среды. В первом приближении можно говорить о двух характеристиках фенотипа: а) число направлений выноса характеризует число факторов среды, к которым чувствителен фенотип, — мерность фенотипа; б) «дальность» выноса характеризует степень чувствительности фенотипа к данному фактору среды. В совокупности эти характеристики определяют богатство и развитость фенотипа. Чем многомернее фенотип и чем он чувствительнее, чем дальше фенотип от генотипа, тем он богаче. Если сравнить вирус, бактерию, аскариду, лягушку и человека, то богатство фенотипа в этом ряду растет.

Ведущая роль в формировании фенотипа принадлежит наследственной информации, заключенной в генотипе организма. При этом простые признаки развиваются как результат определенного типа взаимодействия соответствующих аллельных генов (см. разд. 3.6.5.2). Вместе с тем существенное влияние на их формирование оказывает вся система генотипа (см. разд. 3.6.6). Формирование сложных признаков осуществляется в результате разнообразных взаимодействий неаллельных генов непосредственно в генотипе либо контролируемых ими продуктов. Стартовая программа индивидуального развития зиготы содержит также так называемую пространственную информацию, определяющую передне-задние и спинно-брюшные (дорзовентральные) координаты для развития структур.

Наряду с этим результат реализации наследственной программы, заключенной в генотипе особи, в значительной мере зависит от условий, в которых осуществляется этот процесс. Факторы внешней по отношению к генотипу среды могут способствовать или препятствовать фенотипическому проявлению генетической информации, усиливать или ослаблять степень такого проявления. В разд. 3.6.6.2 была рассмотрена роль негенетических факторов-эффекторов в регуляции экспрессии генов. Уже на стадии транскрипции контроль экспрессии отдельных генов осуществляется путем взаимодействия генетических и негенетических факторов. Следовательно, даже в формировании элементарных признаков организма — полипептидов — принимают участие генотип как система взаимодействующих генов и среда, в которой он реализуется.

В генетике индивидуального развития среда представляет собой сложное понятие. С одной стороны, это непосредственное окружение, в котором осуществляют свои функции отдельные гены и генотип в целом. Оно образовано всей совокупностью факторов внутренней среды организма: клеточное содержимое (исключая ДНК), характер прямых межклеточных взаимодействий, биологически активные вещества (гормоны). Совокупность внутриорганизменных факторов, влияющих на реализацию наследственной программы, обозначают как среду 1-го порядка. Особенно большое влияние на функцию генотипа факторы этой среды оказывают в период активных формообразовательных процессов, прежде всего в эмбриогенезе. С другой стороны, выделяют понятие окружающей среды, или среды 2-го порядка, как совокупности внешних по отношению к организму факторов.

Домина?нтность (доминирование) — форма взаимоотношений между аллелями одного гена, при которой один из них (доминантный) подавляет (маскирует) проявление другого (рецессивного) и таким образом определяет проявление признака как у доминантных гомозигот, так и у гетерозигот.

Рецесси?вный ген (англ. recessive gene) — генетическая информация, которая может подавляться воздействием доминантного гена и не проявляется в фенотипе. Рецессивный ген способен обеспечить проявление определяемого им признака только в том случае, если находится в паре с соответственным рецессивным геном. Если же он находится в паре с доминантным геном, то он не проявляется, так как доминантный ген подавляет его. Свойства, представленные рецессивными генами, проявляются в фенотипе у потомка лишь в том случае, если у обоих родителей присутствует рецессивный ген.

]Полное доминирование

При полном доминировании фенотип гетерозиготы не отличается от фенотипа доминантной гомозиготы. Видимо, в чистом виде полное доминирование встречается крайне редко или не встречается вовсе. Например, люди, гетерозиготные по гену гемофилии А (сцепленный с Х-хромосомой рецессивный ген), имеют половинное количество нормального фактора свертывания по сравнению с гомозиготными по нормальному аллелю людьми, и активность фактора свертывания VIII у них в среднем вдвое ниже, чем у здоровых людей. В то же время у здоровых людей активность этого фактора варьирует от 40 до 300 % по сравнению со средней для популяции. Поэтому наблюдается значительное перекрывание признаков у здоровых и носителей-гетерозигот. При фенилкетонурии (аутосомно-рецессивный признак) гетерозиготы обычно считаются здоровыми, однако активность печёночного фермента фенилаланин-4-гидроксилазы у них вдвое ниже нормы, а содержание фенилаланина в клетках повышено, что, по некоторым данным, приводит к снижению IQ и повышенному риску развития некоторых психотических расстройств.

[править]Неполное доминирование

При неполном доминировании гетерозиготы имеют фенотип, промежуточный между фенотипами доминантной и рецессивной гомозиготы. Например, при скрещивании чистых линий львиного зева и многих других видов цветковых растений с пурпурными и белыми цветками особи первого поколения имеют розовые цветки. При скрещивании чистых линий андалузских кур чёрной и белой окраски в первом поколении рождаются куры серой окраски. На молекулярном уровне самым простым объяснением неполного доминирования может быть как раз двукратное снижение активности фермента или другого белка (если доминантный аллель дает функциональный белок, а рецессивный — дефектный). Например, за белую окраску может отвечать дефектный аллель, который дает неактивный фермент, а за красную — нормальный аллель, который дает фермент, производящий красный пигмент. При половинной активности этого фермента у гетерозигот количество красного пигмента снижается вдвое, и окраска розовая. Могут существовать и другие механизмы неполного доминирования.

При неполном доминировании во втором поколении моногибридного скрещивания наблюдается одинаковое расщепление по генотипу и фенотипу в соотношении 1:2:1.

[править]Кодоминирование

При кодоминировании, в отличие от неполного доминирования, у гетерозигот признаки, за которые отвечает каждый из аллелей, проявляются одновременно (смешанно). Типичный пример кодоминирования — наследование групп крови системы АВ0 у человека. Всё потомство людей с генотипами АА (вторая группа) и ВВ (третья группа) будет иметь генотип АВ (четвертая группа). Их фенотип не является промежуточным между фенотипами родителей, так как на поверхности эритроцитов присутствуют оба агглютиногена (А и В). При кодоминировании назвать один из аллелей доминантным, а другой — рецессивным нельзя, эти понятия теряют смысл: оба аллеля в равной степени влияют на фенотип. На уровне РНК и белковых продуктов генов, видимо, подавляющее большинство случаев аллельных взаимодействий генов — это кодоминирование, ведь каждый из двух аллелей у гетерозигот обычно кодирует РНК и/или белковый продукт, и оба белка или РНК присутствуют в организме.

Рецессивность (от лат. recessus — отступление, удаление), одна из форм фенотипического проявления генов. При скрещивании особей, различающихся по определённому признаку, Г. Мендель обнаружил, что у гибридов первого поколения один из родительских признаков исчезает (рецессивный), а другой проявляется (доминантный) (см. Менделизм, Менделя законы). Доминантная форма (аллель) гена (А) проявляет своё действие в гомо- и гетерозиготном состояниях (АА, Аа), рецессивная же аллель (а) может проявиться лишь в отсутствие доминантной (—а) (см.Гетерозиготность, Гомозиготность). Т. о., рецессивная аллель — подавляемый член аллельной пары генов. Доминантность или Рецессивностьаллели выявляется лишь при взаимодействии конкретной пары аллельных генов. Это можно проследить при анализе гена, который встречается в нескольких состояниях (так называемая серия множественных аллелей). У кролика, например, имеется серия из 4 генов, определяющих окраску шёрстного покрова (С — сплошная окраска, или агути; cch — шиншилла; ch — гималайская окраска; с — альбинос). Если кролик имеет генотип Ccchто в этом сочетании cch — рецессивная аллель, а в комбинациях cchch и cchc она доминирует, обусловливая окраску шиншилла.

Характер проявления рецессивного признака может изменяться под влиянием внешних условий. Так, у дрозофилы имеется рецессивная мутация— «зачаточные крылья», которая в гомозиготе при оптимальной температуре (25 °С) приводит к резкому уменьшению размеров крыльев. При повышении температуры до 30 °С размер крыльев увеличивается и может достичь нормы, т. е. проявляться как доминантный признак.

Рецессивное действие гена может быть обусловлено замедлением или изменением течения какой-либо биохимической функции. Значительная часть врождённых нарушений обмена веществ у человека наследуется по рецессивному типу, т. е. клиническая картина болезни наблюдается лишь у гомозигот. У гетерозигот заболевание не проявляется за счёт функционирования нормальной (доминантной) аллели (см.«Молекулярные болезни», Наследственные заболевания). Большинство рецессивных летальных мутаций связано с нарушением жизненно важных биохимических процессов, что приводит к гибели гомозиготных по этому гену особей. Поэтому в практике животноводства и растениеводства важно выявление особей — носителей рецессивных летальных и полулетальных мутаций, чтобы не вовлекать вредные гены в селекционный процесс. Эффект инбредной депрессии при близкородственном скрещивании (см. Инбридинг) связан с переходом вредных рецессивных генов в гомозиготное состояние и проявлением их действия. Вместе с тем в селекционной практике рецессивные мутации часто служат ценным исходным материалом. Так, их использование при разведении норок дало возможность получать зверей со шкурками платиновой, сапфировой и других окрасок, которые часто ценятся дороже тёмно-коричневых норок дикого типа.

При проведении генетического анализа применяют скрещивание гибрида с родительской формой, гомозиготной по рецессивным аллелям. Так удаётся выяснить гетеро- или гомозиготность по анализируемым парам генов. Рецессивные мутации играют важную роль в эволюционном процессе. Советский генетик С. С. Четвериков показал (1926), что природные популяции содержат огромное количество разнообразных рецессивных мутаций в гетерозиготном состоянии. Ср. Доминантность, Кодоминантность.

Вопрос 41 (Ген, Молекулярное строение гена у прокариот и эукариот, Уникальные гены и повторы на ДНК, структурные гены, Гипотеза один ген-один фермент современная трактовка…..)

Ген — структурная и функциональная единица наследственности, контролирующая развитие определённого признака или свойства. Совокупность генов родители передают потомкам во время размножения. Однако перенос генов от родителей к потомкам не является единственным способом передачи генов. В 1959 году был описан случай горизонтального переноса генов. В отличие от вертикального переноса, в горизонтальном организм передаёт гены организму, который не является его потомком. Этот способ передачи широко распространён среди одноклеточных организмов и в меньшей степени среди многоклеточных.

Гены эукариот

Отметим вначале, что у эукариотических организмов ДНК присутствует не только в ядрах, но и в органеллах — митохондриях, которые есть у всех эукариот, и хлоропластах, имеющихся у зеленых растений. По многим признакам предполагается, что орга-неллы происходят от прокариот: митохондрии от а-пурпурных бактерий, а хлоропласты — от цианобактерий. Их роднят с прокариотами многие черты белок-синтезирующего аппарата. Учитывая направленность интересов генетической инженерии, ограничимся здесь рассмотрением только ядерных генов.

Строение. Гены эукариот по строению и характеру транскрипции значительно отличаются от прокариотических генов. Их отличительной особенностью является прерывность, т. е. чередование в них последовательностей нуклеотидов, которые представлены (экзоны) или не представлены (интроны) в мРНК. Отсюда ясно, что интроны относятся к некодирующим последовательностям. Они могут располагаться не только в области, ограниченной инициирующим и терминирующим кодонами, но и вне их, в начале или в конце гена. Их длина может превышать 10 т.п.н. У низших эукариот прерывные гены составляют меньшинство всех генов (5 % у дрожжей), а у высших — большинство (94 % у млекопитающих). Отметим, что мозаичность генов найдена и в прокариотических клетках.

Эволюционно связанные гены, обладающие высокой степенью физической гомологии, образуют семейства. Белки, кодируемые такими генами, действуя одновременно или на разных этапах развития организма, выполняют одинаковые функции. Например, состав белков в а- и р-цепях гемоглобина крови млекопитающих различен у эмбриона, плода и взрослого организма, что вызвано дифференциальной экспрессией генов, входящих в а- и р-семей-ства глобиновых генов. Наряду с функционирующими генами, в семействах обнаружены нефункционирующие. Такие гены получили название псевдогенов. Они не экспрессируются по различным причинам (изменение рамки считывания из-за делеции или вставки, отсутствие интрона и т. п.).

Характерной чертой генов, входящих в семейство, является сходная картина локализации большинства интронов. Это сходство не ограничивается рамками определенного генома. Так, в случае глобиновых генов сходными по расположению интронов оказались гены у всех исследованных животных — у млекопитающих, птиц и лягушек. Однако длины и нуклеотидные последовательности интронов могут значительно варьировать, меняя тем самым и размеры самих генов.

Транскрипция. Гены эукариот не группируются в опероны, поэтому каждый из них имеет собственные промотор и терминатор транскрипции. Транскрипцию ведут три различные РНК-полимеразы: I, II и III, которые синтезируют рРНК, мРНК и тРНК, соответственно. Как и в случае прокариот, рассмотрим только механизм экспрессии генов, кодирующих белки. Поэтому далее под эукариотической РНК-полимеразой подразумевается РНК-полимераза II. Она состоит из более десятка субъединиц, но все же связываться непосредственно с промотором не может. Ее посадке на промотор способствуют транскрипционные факторы белковой природы. Ряд из них распознают специфические последовательности (боксы) в промоторе.

Длина типового промотора высших эукариот — около 100 п.н. В нем следует различать две части — базовую и дополнительную. Гены, имеющие только базовую часть промотора, функционируют в любых клетках организма и не подвержены ткане-специфичес-кому контролю. Эта часть служит для инициации транскрипции и точной ориентации РНК-полимеразы II относительно первого транскрибируемого нуклеотида. Дополнительная часть совместно с энхансерами используется для повышения эффективности транскрипции и регуляции активности гена.

Прокариоты (лат. Procaryota, от др.-греч. ??? «перед» и ?????? «ядро»), или доядерные — одноклеточные живые организмы, не обладающие (в отличие от эукариот) оформленным клеточным ядром и другими внутренними мембранными органоидами (за исключением плоских цистерн у фотосинтезирующих видов, например, у цианобактерий). Единственная крупная кольцевая (у некоторых видов — линейная) двухцепочечная молекула ДНК, в которой содержится основная часть генетического материала клетки (так называемый нуклеоид) не образует комплекса с белками-гистонами (так называемого хроматина). К прокариотам относятся бактерии, в том числе цианобактерии (сине-зелёные водоросли), и археи. Потомками прокариотических клеток являютсяорганеллы эукариотических клеток — митохондрии и пластиды.

Прокариоты разделяют на два таксона в ранге домена (надцарства): Бактерии (Bacteria) и Археи (Archaea).[1]

Для клеток прокариот характерно отсутствие ядерной оболочки, ДНК упакована без участия гистонов. Тип питания осмотрофный.

Генетический материал прокариот представлен одной молекулой ДНК, замкнутой в кольцо, имеется только один репликон. В клетках отсутствуют органоиды, имеющие мембранное строение. В геноме могут присутствовать мобильные генетические элементы, а у некоторых прокариот (например, вольбахия) их содержится необычно много. Изучение бактерий привело к открытиюгоризонтального переноса генов, который был описан в Японии в 1959 г. Это процесс широко распространен среди прокариот, а также у некоторых эукариот. Открытие горизонтального переноса генов у прокариот заставило по-другому взглянуть на эволюцию жизни. Ранее эволюционная теория базировалась на том, что виды не могут обмениваться наследственной информацией. Прокариоты могут обмениваться генами между собой непосредственно (конъюгация, трансформация) а также с помощью вирусов -бактериофагов (трансдукция).

Уникальные гены — это гены, которые встречаются в клетке два или несколько раз (до 10-20). Большинство исследователей считает, что у многоклеточных общее число генов в среднем равно сто тысяч и подавляющее их число — это уникальные гены. Характерная черта генов эукариотов — мозаичное экзон-интронное строение. Интроны, не несущие генетической информации, вырезаются (сплайсинг). Число и размер интронов у разных видов варьируется. Присутствие их в гене приводит к значительному увеличению размеров гена. Интроны стабилизируют экзоны, однако существует представление, что интрон— это так называемая «эгоистическая» ДНК, не дающая организму никаких эволюционных преимуществ. Экзоны контролируют синтез белков: 1 экзон — 1 домен.

К повторяющимся генам относятся прежде всего гены больших и малых рРНК и гистонов. Число их сильно варьирует и может достигать более 2000. Гены больших рРНК организованы в блоки, в которых последовательно идут гены 18S рРНК, 58S рРНК и 28S рРНК. Между ними имеются промежутки, различающиеся по длине у разных организмов. Межгенные участки имеют повторы разных типов, с необычной последовательностью, богатых парами ГЦ. Гены низкомолекулярных ядерных РНК блоков не образуют. Гены гистонов повторяются в геноме десятки (у млекопитающих), и сотни (у дрозофилы), и тысячи (у аксолотля) раз. Причем не удается уловить связи между этим показателем и положением организма на эволюционной лестнице.

Перестраивающиеся, или рекомбинирующие, гены — это гены, кодирующие легкие и тяжелые цепи белков иммуноглобулинов, выполняющих функции антител. Гены этих белков состоят из двух типов генов для легких и пяти типов — для тяжелых цепей. Легкие цепи кодируются тремя отдельными генетическими элементами, тяжелые — четырьмя. Перестройки генома приводят к соединению разных участков и в итоге — к образованию иммуноглобулинов разных классов.

Прыгающие гены, или транспозоны, — мобильные генетические элементы. Являясь нормальным компонентом генома, они составляют его значительную часть (у дрозофилы- 7% генома), могут быть представлены многими копиями, рассеянными по геному, и имеют варьирующую локализацию. Структура разных классов мигрирующих элементов (МЭ) варьирует, но для всех их характерно наличие на концах обращенных повторов. В середине МЭ могут иметь уникальные последовательности. МЭ проявляют высокую локусную специфичность, так как могут встраиваться в определенную последовательность на хромосоме.

Полигенное наследование признаков

Повторы на днк

Повторяющаяся ДНК — атрибут любой генетической системы. Еще на самых ранних этапах эволюции, когда возник почти полный репертуар полипептидов — носителей основных молекулярных функций (что-то вроде словаря генетического языка), им уже, по всей видимости была присуща внутренняя периодичность ( Ohno, 1981 , 1984 ; Go, 1983 ). Наличие олигомерных повторов в современных генах и белках объясняют тем, что вообще в любой информационной системе копирование текста — эффективное средство повышения помехоустойчивости при передаче сообщений . Применительно к генетическому языку существование внутригенных повторов резко снижает негативные эффекты таких ошибок, как сдвиги рамки трансляции, различные делеции и вставки ( Ohno, 1984 ). Действительно, белки, чьи гены содержат внутренние олигомерные повторы, также должны обладать периодичной первичной структурой. При этом длина полипептидного повтора будет зависеть от того, кратна ли трем длина соответствующего матричного повтора. Например, повторы из шести нуклеотидов будут порождать исключительно дипептидную периодичность, тогда как пентамерным повторам в гене должна отвечать периодичность той же размерности и в полипептидном продукте ( рис 1 ).

Но, пожалуй, самая интересная особенность таких повторов состоит в том, что они обеспечивают совпадение обеих периодичностей, нуклеотидной и аминокислотной, во всех трех возможных рамках трансляции ( Ohno, 1984 , 1987 ). Поэтому С.Оно и полагает, что еще в самом начале, на заре жизни, когда биохимическая машина трансляции работала с частыми сбоями и когда рамка считывания вряд ли была однозначно фиксирована, как раз такие повторы (длиной , не кратной трем) должны были иметь ощутимое селективное преимущество. В изрядном количестве олигонуклеотидные мотивы именно такой конфигурации присутствуют практически во всех проанализированных генах самых разных видов про- и эукариот. В принципе нельзя исключить, что по крайней мере некоторые из них сохранились с тех давних времен, т.е. являются своеобразными молекулярными реликтами.

Далее, спонтанно возникнув, даже сравнительно короткие повторенные участки существенно увеличивают вероятность дупликации (и автоматически — мультипликации) как их самих, так и тех сегментов генома, которые ими фланкированы ( Smith, 1976 ). Конкретные механизмы внутригеномного размножения повторов могут быть разными (неравный кроссинговер, скользящая гиперрепликация, обратная транскрипция и т.д.), но само размножение представляет собой типичный автокаталитический процесс ( Orgel, Crick, 1980 ; Doolitle et al., 1984 ; и др.). И хотя в целом ряде случаев количество повторов (например, МГЭ) регулируется по принципу обратной связи ( O’hare, Rubin, 1983 ; Simons, Kleckner, 1983 ; Snyder, Doolitle, 1988), хотя для любого вида организмов в норме имеются, по-видимому, и неспецифические селективные барьеры на пути эгоистичного распространения повторов по геному ( Бердников, Родин, Жарких, 1982 ; Rodin et al., 1985 ; Родин, 1985а,б ), для большинства современных организмов, в особенности эукариотических, характерна чрезвычайно высокая концентрация повторов практически на всех уровнях молекулярно-генетической организации.

Структурные гены — уникальные компоненты генома, представляющие единственную последовательность, кодирующую определённый белок или некоторые виды РН……..

Вопрос 42 (Классификация генов: гены структурные ,регуляторы

В зависимости от локализации генов в структурах клетки различают ядерные и митохондриальные гены (рис. IV. 14).

По своему функциональному назначению гены могут быть разделены на две группы. Первая группа представлена генами, кодирующими белки; вторая группа — генами, контролирующими синтез РНК.

Среди генов, кодирующих белки, различают:

— гены «домашнего хозяйства», продукты которых необходимы для обеспечения функции любого типа клеток;

— гены терминальной дифференцировки, т. е. гены, обеспечивающие специализированные функции клеток;

Полигенное наследование признаков

Рис. IV. 14. Классификация генов

— гены траскрипционных факторов, контролирующие особые ядерные белки, способные соединяться с регуляторными областями многих структурных генов, вызывая либо активацию, либо подавление транскрипции.

РНК-кодирующие гены определяют синтез различных видов РНК, необходимых для синтеза рибосом, обеспечения процессов трансляции, сплайсинга, а также для синтеза молекул РНК, влияющих на функционирование других генов (регуляторное действие).

Гены человека, как правило, представляют собой функционально прерывистую последовательность нуклеотидов (рис. IV. 15). Относительно короткие кодирующие последовательности оснований чередуются в них с длинными некодирующими последовательностями. Последовательности гена, представленные в молекуле зрелой иРНК, получили название экзонов. Именно экзоны являются кодирующими участками гена, контролирующими аминокислотную последовательность белков. Экзоны разделены некодирующими участками — нитронами, которые вырезаются (сплайсинг) в процессе созревания иРНК и не участвуют в процессе трансляции. В настоящее время в понятие «ген» включаются не только транскрибируемые области (экзоны и интроны), но и фланкирующие ген последовательности. Фланкирующие области гена, как правило, высоко консервативны, т. е. характеризуются постоянством нук-леотидной последовательности, наблюдаемым даже при сравнении представителей различных видов. Фланкирующие области гена содержат последовательности, необходимые для его правильной работы: например, промоторная область в начале 5′-области или хвостовая нетранслируемая область поли-А, расположенная на З’-конце гена. Так, ТАГА — бокс (последовательность чередования

Гены структурные регуляторы….

Генетическая информация о структуре белков и нуклеиновых кислот у всех организмов заключена в молекулах ДНК или РНК в виде последовательностей нуклеотидов, называемыхгенами . Совокупность генов организма, наряду с другими последовательностями ДНК составляет геном .

Координированная работа (экспрессия) большого числа генов возможна благодаря наличию регуляторных механизмов, определяющих место, время и уровень экспрессии конкретного гена или группы генов. Чтобы экспрессия гена была регулируемой, он должен содержать индивидуальную (регуляторную) метку, по которой регуляторные компоненты генетической системы клетки или организма могли бы безошибочно оказать на него необходимое воздействие. В соответствии с этим любой ген состоит из двух основных функциональных частей (последовательностей нуклеотидов) — регуляторной и структурной.

Регуляторная часть обеспечивает первые этапы реализации генетической информации, заключенной в структурной части гена. Размер гена складывается из размеров его структурной и регуляторной частей. Определить протяженность гена не так просто, особенно в случае генов эукариот. Отдельные элементы регуляторной области генов, например, энхансеры , могут располагаться на значительном (60 т.п.о.) расстоянии от структурной части гена как перед ней, так и позади нее или даже в ней самой.

В структурной части большинства эукариотических генов кодирующие последовательности нуклеотидов ( экзоны ) перемежаются протяженными некодирующими последовательностями (интронами ). Суммарный размер интронов, как правило, многократно превышает суммарный размер экзонов конкретных генов. Таким образом, геном эукариотического организма содержит не только последовательность нуклеотидов с генетической информацией о белках и нуклеиновых кислотах, но и большое количество последовательностей нуклеотидов, не несущих такой информации. Помимо интронов в геноме эукариот имеется большое количество других некодирующих последовательностей нуклеотидов, поэтому общая длина некодирующих последовательностей нуклеотидов в геноме эукариот в десятки раз превышает длину кодирующих последовательностей. Не вполне определенные и очень большие размеры генов эукариот, к тому же расположенных в геноме среди многочисленных некодирующих последовательностей нуклеотидов, создают значительные трудности для изучения их структуры и функционирования in vivo

Свойство генов

Дискретность (от лат. discretus — разделённый, прерывистый) — свойство, противопоставляемое непрерывности, прерывность. Под дискретностью понимают:

1. Нечто, изменяющееся между несколькими различными стабильными состояниями подобно выключателю, который может быть либо включён, либо выключен.

2. Нечто, состоящее из отдельных частей, прерывистость, дробность. Например, дискретный спектр, дискретные структуры, дискретные сообщения

Стабильность — способность системы функционировать, не изменяя собственную структуру, и находиться в равновесии. Это определение должно быть неизменным во времени.

Лабильность (от лат. labilis — скользящий, неустойчивый) в физиологии — функциональная подвижность, скорость протекания элементарных циклов возбуждения в нервной и мышечной тканях. Понятие «лабильность» введено русским физиологом Н. Е. Введенским (1886), который считал мерой лабильности наибольшую частоту раздражения ткани, воспроизводимую ею без преобразования ритма. Лабильность отражает время, в течение которого ткань восстанавливает работоспособность после очередного цикла возбуждения. Наибольшей лабильностью отличаются отростки нервных клеток — аксоны, способные воспроизводить до 500—1000 импульсов в 1 с; менее лабильны центральные и периферические места контакта — синапсы (например, двигательное нервное окончание может передать на скелетную мышцу не более 100—150 возбуждений в 1 с). Угнетение жизнедеятельности тканей и клеток (например, холодом, наркотиками) уменьшает лабильность, так как при этом замедляются процессы восстановления и удлиняется рефрактерный период. Лабильность — величина непостоянная. Так, в сердце под влиянием частых раздражений рефракторный период укорачивается, а следовательно, возрастает лабильность. Это явление лежит в основе т. н. усвоения ритма. Учение о лабильности важно для понимания механизмов нервной деятельности, работы нервных центров и анализаторов как в норме, так и при различных болезненных отклонениях.

Множественный аллелизм — это существование в популяции более двух аллелей данного гена. В популяции оказываются не два аллельных гена, а несколько. Возникают в результате разных мутаций одного локуса. Гены множественных аллелей взаимодействуют между собой различным образом.

В популяциях как гаплоидных, так и диплоидных организмов обычно существует множество аллелей, для каждого гена. Это следует из сложной структуры гена — замена любого из нуклеотидов или иные мутации приводят к появлению новых аллелей. Видимо, лишь в очень редких случаях любая мутация столь сильно влияет на работу гена, а ген оказывается столь важным, что все его мутации приводят к гибели носителей. Так, для хорошо изученных у человека глобиновых генов известно несколько сотен аллелей, лишь около десятка из них приводит к серьёзным патологиям.

Плейотропи?я (от греч. ?????? — «больше» и греч. ??????? — «поворачивать, превращать») — явление множественного действия гена. Выражается в способности одного гена влиять на несколько фенотипических признаков. Таким образом, новая мутация в гене может оказать влияние на некоторые или все связанные с этим геном признаки. Этот эффект может вызвать проблемы при селективном отборе, когда при отборе по одному из признаков лидирует один из аллелей гена, а при отборе по другим признакам — другой аллель этого же гена.

Плейотропия — это действие одного гена на несколько фенотипических признаков. Продукт фактически каждого гена участвует как правило в нескольких, а иногда и в очень многих процессах, образующих метаболическую сеть организма. Особенно характерна плейотропия для генов, кодирующих сигнальные белки…..

специфичность — каждый ген кодирует свой признак

Дополнительные материалы:

Биология. Генетика: Наследование признаков, сцепленных с полом. Центр онлайн-обучения «Фоксфорд»


Похожие статьи: