Побочное воздействие на микроорганизмы. 6 страница

      Комментарии к записи Побочное воздействие на микроорганизмы. 6 страница отключены

Через 2 ч инкубации при 37 °С учитывают результаты, оценивая внешний вид осадка эритроцитов (без встряхивания): при отрицательной реакции появляется осадок в виде компактного.диска или кольца на дне лунки, при положительной реакции — характерный кружевной осадок эритроцитов, тонкая пленка с неровными краями.

Побочное воздействие на микроорганизмы. 6 страница

№ 77 Реакция коагглютинации. Механизм, компоненты. Применение.

Реакцию коагглютинации применяют для определения антигенов с помощью антител, адсорбированных на белке А клеток стафилококка (антительный диагностикум).

Белок А имеет сродство к Fc-фрагменту иммуноглобулинов, поэтому такие бактерии, обработанные иммунной диагностической сывороткой неспецифически адсорбируют антитела сыворотки, которые затем взаимодействуют активными центрами с соответствующими микробами, выделенными от больных. В результате коагглютинации образуются хлопья, состоящие из стафилококков, антител диагностической сыворотки и определяемого микроба.

Механизм. Основан на том, что находящийся на поверхности золотистого стафилококка белок А селективно реагирует с Fc-фрагментом IgGl, G2, G4, оставляя свободными антидетерминанты Ат, которые, взаимодействуя с гомологичным Аг, вызывают агглютинацию стафилококков. Для постановки КОА применяют коммерческие стафилококковые реагенты, содержащиеся в ампулах или высушенные в лунках полистироловых пластин или предметных стекол. К реагенту добавляют 0,01-0,1 мл исследуемой культуры или растворимого Аг, инкубируют при комнатной температуре 10-30 мин (в условиях постановки реакции на стекле) или 18 -20 ч (в условиях постановки реакции в капиллярах). Учет проводят так же, как при обычной РА. Агглютинацию учитывают по количеству осадка и степени просветления жидкости. Реакцию считают положительной, если агглютинация отмечается в разведении, близком к титру диагностической сыворотки. Одновременно учитывают контроли: сыворотка, разведенная изотоническим раствором натрия хлорида, должна быть прозрачной, взвесь микробов в том же растворе — равномерно мутной, без осадка.

Побочное воздействие на микроорганизмы. 6 страница

№ 78 Реакция торможения гемагглютинации. Механизм. Компоненты. Применение.

Реакция торможения гемагглютинации (РТГА) — метод идентификации вируса или выявления противовирусных антител в сыворотке крови больного, основанный на феномене отсутствия агглютинации эритроцитов препаратом, содержащим вирус, в присутствии иммунной к нему сыворотки крови.

Реакция торможения гемагглютинации (РТГА) основана на блокаде, подавлении антигенов вирусов антителами иммунной сыворотки, в результате чего вирусы теряют свойство агглютинировать эритроциты.

РТГА применяют для диагностики многих вирусных болезней, возбудители которых (вирусы гриппа, кори, краснухи, клещевого энцефалита и др.) могут агглютинировать эритроциты различных животных.

Механизм. Типирование вируса проводят в реакции торможения гемаг-глютинации (РТГА) с набором типоспецифических сывороток. Результаты реакции учитывают по отсутствию гемагглютинации. Подтипы вируса А с антигенами H0N1, H1N1, Н2N2, H3N2 и др. могут быть дифференцированы в РТГА с набором гомологичных типоспецифических сывороток.

Побочное воздействие на микроорганизмы. 6 страница

№ 79 Реакция преципитации. Механизм. Компоненты. Способы постановки. Применение.

Реакция преципитации (РП) — это формирование и осаждение комплекса растворимого молекулярного антигена с антителами в виде помутнения, называемого преципитатом. Он образуется при смешивании антигенов и антител в эквивалентных количествах; избыток одного из них снижает уровень образования иммунного комплекса.

РП ставят в пробирках (реакция кольцепреципитации), в гелях, питательных средах и др. Широкое распространение получили разновидности РП в полужидком геле агара или агарозы: двойная иммунодиффузия по Оухтерлони, радиальная иммунодиффузия, иммуноэлектрофорез и др.

Механизм. Проводится с прозрачными коллоидными растворимыми антигенами, экстрагированными из патологического материала, объектов внешней среды или чистых культур бактерий. В реакции используют прозрачные диагностические преципитирующие сыворотки с высокими титрами антител. За титр преципитирующей сыворотки принимают то наибольшее разведение антигена, которое при взаимодействии с иммунной сывороткой вызывает образование видимого преципитата — помутнение.

Реакция кольцепреципитации ставится в узких пробирках (диаметр 0,5 см), в которые вносят по 0,2—0,3 мл преципити-рующей сыворотки. Затем пастеровской пипеткой медленно наслаивают 0,1—0,2 мл раствора антигена. Пробирки осторожно переводят в’вертикальное положение. Учет реакции производят через 1—2 мин. В случае положительной реакции на границе между сывороткой и исследуемым антигеном появляется преципитат в виде белого кольца. В контрольных пробирках преципитат не образуется.

Побочное воздействие на микроорганизмы. 6 страница

№ 80 Реакция связывания комплемента. Механизм. Компоненты. Применение.

Реакция связывания комплемента (РСК) заключается в том, что при соответствии друг другу антигены и антитела образуют иммунный комплекс, к которому через Fc-фрагмент антител присоединяется комплемент (С), т. е. происходит связывание комплемента комплексом антиген—антитело. Если же комплекс антиген—антитело не образуется, то комплемент остается свободным.

Специфическое взаимодействие АГ и AT сопровождается адсорбцией (связыванием) комплемента. Поскольку процесс связывания комплемента не проявляется визуально, Ж. Борде и О.Жангу предложили использовать в качестве индикатора гемолитическую систему (эритроциты барана + гемолитическая сыворотка), которая показывает, фиксирован ли комплемент комплексом АГ-АТ. Если АГ и AT соответствуют друг другу, т. е. образовался иммунный комплекс, то комплемент связывается этим комплексом и гемолиза не происходит. Если AT не соответствует АГ, то комплекс не образуется и комплемент, оставаясь свободным, соединяется со второй системой и вызывает гемолиз.

Компоненты. Реакция связывания комплемента (РСК) относится к сложным серологическим реакциям. Для ее проведения необходимы 5 ингредиентов, а именно: АГ, AT и комплемент (первая система), эритроциты барана и гемолитическая сыворотка (вторая система).

Антигеном для РСК могут быть культуры различных убитых микроорганизмов, их лизаты, компоненты бактерий, патологически измененных и нормальных органов, тканевых липидов, вирусы и вирусосодержащие материалы.

В качестве комплемента используют свежую или сухую сыворотку морской свинки.

Механизм. РСК проводят в две фазы: 1-я фаза — инкубация смеси, содержащей три компонента антиген + антитело + комплемент; 2-я фаза (индикаторная) — выявление в смеси свободного комплемента путем добавления к ней гемолитической системы, состоящей из эритроцитов барана, и гемолитической сыворотки, содержащей антитела к ним. В 1-й фазе реакции при образовании комплекса антиген—антитело происходит связывание им комплемента, и тогда во 2-й фазе гемолиз сенсибилизированных антителами эритроцитов не произойдет; реакция положительная. Если антиген и антитело не соответствуют друг другу (в исследуемом образце нет антигена или антитела), комплемент остается свободным и во 2-й фазе присоединится к комплексу эритроцит — ан-тиэритроцитарное антитело, вызывая гемолиз; реакция отрицательная.

Применение. РСК применяют для диагностики многих инфекционных болезней, в частности сифилиса (реакция Вассермана).

Побочное воздействие на микроорганизмы. 6 страница Побочное воздействие на микроорганизмы. 6 страница

№ 81 Реакция нейтрализации токсина антитоксином. Механизм. Способы постановки, применение.

В основе этой реакции лежит способность специфической антитоксической сыворотки нейтрализовать экзотоксин.

Антитела иммунной сыворотки способны нейтрализовать повреждающее действие микробов или их токсинов на чувствительные клетки и ткани, что связано с блокадой микробных антигенов антителами, т. е. их нейтрализацией.

Реакцию нейтрализации (РН) проводят путем введения смеси антиген—антитело животным или в чувствительные тест-объекты (культуру клеток, эмбрионы). При отсутствии у животных и тест-объектов повреждающего действия микроорганизмов или их антигенов, токсинов говорят о нейтрализующем действии иммунной сыворотки и, следовательно, о специфичности взаимодействия комплекса антиген—антитело.

Для проведения реакции исследуемый материал, в котором предполагается наличие экзотоксина, смешивают с антитоксической сывороткой, выдерживают в термостате и вводят животным (морским свинкам, мышам). Контрольным животным вводят фильтрат исследуемого материала, не обработанный сывороткой. В том случае, если произойдет нейтрализация экзотоксина антитоксической сывороткой, животные опытной группы останутся живыми. Контрольные животные погибнут в результате действия экзотоксина.

Побочное воздействие на микроорганизмы. 6 страница

№ 82 Реакция иммунофлюоресценции. Механизм, компоненты, применение.

Иммунофлюоресцентный метод (РИФ, реакция иммунофлюоресценции, реакция Кунса) — метод выявления специфических Аг с помощью Ат, конъюгированных с флюорохромом. Обладает высокой чувствительностью и специфичностью.

Применяется для экспресс-диагностики инфекционных заболеваний (идентификация возбудителя в исследуемом материале), а также для определения Ат и поверхностных рецепторов и маркеров лейкоцитов (иммунофенотипирование) и др. клеток.

Обнаружение бактериальных и вирусных антигенов в инфекционных материалах, тканях животных и культурах клеток при помощи флюоресцирующих антител (сывороток) получило широкое применение в диагностической практике. Приготовление флюоресцирующих сывороток основано на способности некоторых флюорохромов (например, изотиоцианата флюоресцеина) вступать в химическую связь с сывороточными белками, не нарушая их иммунологической специфичности.

Различают три разновидности метода: прямой, непрямой, с комплементом. Прямой метод РИФ основан на том, что антигены тканей или микробы, обработанные иммунными сыворотками с антителами, меченными флюорохромами, способны светиться в УФ-лучах люминесцентного микроскопа. Бактерии в мазке, обработанные такой люминесцирующей сывороткой, светятся по периферии клетки в виде каймы зеленого цвета.
Непрямой метод РИФ заключается в выявлении комплекса антиген — антитело с помощью антиглобулиновой (против антитела) сыворотки, меченной флюорохромом. Для этого мазки из взвеси микробов обрабатывают антителами антимикробной кроличьей диагностической сыворотки. Затем антитела, не связавшиеся антигенами микробов, отмывают, а оставшиеся на микробах антитела выявляют, обрабатывая мазок антиглобулиновой (антикроличьей) сывороткой, меченной флюорохромами. В результате образуется комплекс микроб + антимикробные кроличьи антитела + антикроличьи антитела, меченные флюорохромом. Этот комплекс наблюдают в люминесцентном микроскопе, как и при прямом методе.

Механизм. На предметном стекле готовят мазок из исследуемого материала, фиксируют на пламени и обрабатывают иммунной кроличьей сывороткой, содержащей антитела против антигенов возбудителя. Для образования комплекса антиген — антитело препарат помещают во влажную камеру и инкубируют при 37 °С в течение 15 мин, после чего тщательно промывают изотоническим раствором хлорида натрия для удаления не связавшихся с антигеном антител. Затем на препарат наносят флюоресцирующую антиглобулиновую сыворотку против глобулинов кролика, выдерживают в течение 15 мин при 37 °С, а затем препарат тщательно промывают изотоническим раствором хлорида натрия. В результате связывания флюоресцирующей антиглобулиновой сыворотки с фиксированными на антигене специфическими анти телами образуются светящиеся комплексы антиген — антитело, которые обнаруживаются при люминесцентной микроскопии.

Побочное воздействие на микроорганизмы. 6 страница

№ 83 Иммуноферментный анализ, иммуноблоттинг. Механизм, компоненты, применение.

Иммуноферментный анализ или метод — выявление антигенов с помощью соответствующих им антител, конъюгированных с ферментом-меткой (пероксидазой хрена, бета-галактозидазой или щелочной фосфатазой). После соединения антигена с меченной ферментом иммунной сывороткой в смесь добавляют субстрат/хромоген. Субстрат расщепляется ферментом и изменяется цвет продукта реакции — интенсивность окраски прямо пропорциональна количеству связавшихся молекул антигена и антител. ИФА применяют для диагностики вирусных, бактериальных и паразитарных болезней, в частности для диагностики ВИЧ-инфекций, гепатита В и др., а также определения гормонов, ферментов, лекарственных препаратов и других биологически активных веществ, содержащихся в исследуемом материале в минорных концентрациях (1010-1012 г/л).

Твердофазный ИФА — вариант теста, когда один из компонентов иммунной реакции (антиген или антитело) сорбирован на твердом носителе, напр., в лунках планшеток из полистирола. Компоненты выявляют добавлением меченых антител или антигенов. При положительном результате изменяется цвет хромогена. Каждый раз после добавления очередного компонента из лунок удаляют несвязавшиеся реагенты путем промывания,

I. При определении антител (левый рисунок) в лунки планшеток с сорбированным антигеном последовательно добавляют сыворотку крови больного, антиглобулиновую сыворотку, меченную ферментом, и субстрат/хромоген для фермента.

II. При определении антигена (правый рисунок) в лунки с сорбированными антителами вносят антиген (напр., сыворотку крови с искомым антигеном), добавляют диагностическую сыворотку против него и вторичные антитела (против диагностической сыворотки), меченные ферментом, а затем субстрат/хромоген для фермента.

Конкурентный ИФА для определения антигенов: искомый антиген и меченный ферментом антиген конкурируют друг с другом за связывание ограниченного количества антител иммунной сыворотки.

Другой тест — Конкурентный ИФА для определения антител: искомые антитела и меченные ферментом антитела конкурируют друг с другом за антигены, сорбированные на твердой фазе.

Иммуноблоттинг — высокочувствительный метод выявления белков, основанный на сочетании электрофореза и ИФА или РИА. Иммуноблоттинг используют как диагностический метод при ВИЧ-инфекции и др.

Побочное воздействие на микроорганизмы. 6 страница Антигены возбудителя разделяют с помощью электрофореза в полиакриламидном геле, затем переносят их из геля на активированную бумагу или нитроцеллюлозную мембрану и проявляют с помощью ИФА. Фирмы выпускают такие полоски с «блотами» антигенов. На эти полоски наносят сыворотку больного. Затем, после инкубации, отмывают от несвязавшихся антител больного и наносят сыворотку против иммуноглобулинов человека, меченную ферментом. Образовавшийся на полоске комплекс [антиген + антитело больного + антитело против Ig человека] выявляют добавлением хромогенного субстрата, изменяющего окраску под действием фермента.

№ 84 Серологические реакции, используемые для диагностики вирусных инфекций.

Иммунные реакции используют при диагностических и иммунологических исследованиях у больных и здоровых людей. С этой целью применяют серологические методы, т. е. методы изучения антител и антигенов с помощью реакций антиген—антитело, определяемых в сыворотке крови и других жидкостях, а также тканях организма.

Обнаружение в сыворотке крови больного антител против антигенов возбудителя позволяет поставить диагноз болезни. Серологические исследования применяют также для идентификации антигенов микробов, различных биологически активных веществ, групп крови, тканевых и опухолевых антигенов, иммунных комплексов, рецепторов клеток и др.

При выделении микроба от больного проводят идентификацию возбудителя путем изучения его антигенных свойств с помощью иммунных диагностических сывороток, т. е. сывороток крови гипериммунизированных животных, содержащих специфические антитела. Это так называемая серологическая идентификация микроорганизмов.

В микробиологии и иммунологии широко применяются реакции агглютинации, преципитации, нейтрализации, реакции с участием комплемента, с использованием меченых антител и антигенов (радиоиммунологический, иммуноферментный, иммунофлюоресцентный методы). Перечисленные реакции различаются по регистрируемому эффекту и технике постановки, однако, все они основаны на реакции взаимодействия антигена с антителом и применяются для выявления как антител, так и антигенов. Реакции иммунитета характеризуются высокой чувствительностью и специфичностью.

Особенности взаимодействия антитела с антигеном являются основой диагностических реакций в лабораториях. Реакция in vitro между антигеном и антителом состоит из специфической и неспецифической фазы. В специфическую фазу происходит быстрое специфическое связывание активного центра антитела с детерминантой антигена. Затем наступает неспецифическая фаза — более медленная, которая проявляется видимыми физическими явлениями, например образованием хлопьев (феномен агглютинации) или преципитата в виде помутнения. Эта фаза требует наличия определенных условий (электролитов, оптимального рН среды).

Связывание детерминанты антигена (эпитопа) с активным центром Fab-фрагмента антител обусловлено ван-дер-ваальсовыми силами, водородными связями и гидрофобным взаимодействием. Прочность и количество связавшегося антигена антителами зависят от аффинности, авидности антител и их валентности.

№ 85 Диагностикумы. Получение, применение.

В диагностических целях при обнаружении антител в сыворотке крови больных, реконвалесцентов и бактерионосителей используются серологические реакции.

Для постановки таких реакций применяются диагностикумы — препараты, содержащие взвесь обезвреженных микроорганизмов или определенные антигены.

Необходимость использования диагностикумов для серологических реакций связана не только с явным их преимуществом перед живыми культурами микробов (безопасность в работе), но еще и потому, что для приготовления диагностикумов подбираются штаммы микроорганизмов с высокой чувствительностью к антителам и способностью длительно сохранять антигенные свойства.

Для инактивации микроорганизмов при приготовлении диагностикумов чаще всего используются химические вещества, особенно формалин, являющийся лучшим консервантом. Убитые нагреванием микробы хуже сохраняют антигенные свойства и применяются редко.

В серологических реакциях (реакции агглютинации, реакции пассивной гемагглютинации, реакции связывания комплемента, реакции торможения гемагглютинации) для выявления специфических антител применяются: бактериальные, эритроцитарные и вирусные диагностикумы.

Бактериальные диагностикумы могут содержать инактивированную микробную взвесь или отдельные антигенные компоненты бактерий: О, Н или Vi-антигены и используются в реакциях агглютинации.

Эритроцитарные диагностикумы представляют собой эритроциты (обработанные танином или формалином) с адсорбированными на них антигенами, извлеченными из бактерий, и применяются в РПГА (реакции пассивной гемагглютинации). В том случае, когда РПГА используется для выявления антигена в выделениях больных, в тканях и др., применяют «антительные диагностикумы», т. е. эритроциты, сенсибилизированные антителами.

Вирусные диагностикумы — препараты, содержащие инактированные вируссодержащие жидкости (культуральные, из куриных эмбрионов или организма животных, зараженных соответствующим вирусом), применяются в РСК (реакции связывания комплемента), реакции торможения гемагглютинации (РТГА) и реакции нейтрализации.

В настоящее время в лабораториях используются следующие диагноста кумы.

1. Бактериальный диагностикум сальмонелл тифа. Применяется в реакции агглютинации для обнаружения антител в сыворотке больных.

2. Сальмонеллезные О-диагностикумы содержат О-антигены различных групп сальмонелл (инактивированных 15%-ным раствором глицерина). Применяются для выявления О-аптител при сальмонеллезных инфекциях в реакции агглютинации с сывороткой больных.

3. Сальмонеллезные Н-монодиагностикумы. Используются в реакции агглютинации для определения заболевания в прошлом (анамнестическая реакция агглютинации) и реже с диагностической целью.

4. Vi — брюшнотифозный диагностикум. Применяется в реакции агглютинации при выявлении брюшнотифозного бактерионосительства.

5. Единый бруцеллезный диагностикум — взвесь бруцелл (инактивированных фенолом), подкрашенная метиленовым синим. Применяется для определения антител в сыворотках крови больных бруцеллезом людей и животных в реакциях агглютинации Райта и Хеддльсона.

6. Эритроцитарный сальмонеллезный О-диагностикум — взвесь эритроцитов с адсорбированными на них О-антигенами различных групп сальмонелл. Используется для постановки РПГА с сывороткой больного при уточнении клинического диагноза сальмонеллеэной инфекции.

7. Эритроцитарный Vi-диагностикум — эритроциты, сенсибилизированные очищенным Vi-антигеиом S. typhi, применяется в РПГА при выявлении брюшнотифозного бактерионосительства.

8. Гриппозный диагностикум представляет собой аллантоисную жидкость инфицированных вирусом гриппа (типов А, В) куриных эмбрионов и инактивированную мертиолатом или формалином. Диагностикумы необходимы при постановке РТГА с парными сыворотками больных для уточнения клинического диагноза и циркулирующего типа вируса гриппа.

9. Диагностикум вируса клещевого энцефалита получают из суспензии мозга белых мышей, зараженных вирусом клещевого энцефалита. Суспензию подвергают центрифугированию (для осветлення) и инактивируют химическими веществами.

Диагностикум используется в РТГА и РСК с сывороткой больных при диагностике заболевания.

№ 86 Моноклональные антитела. Получение, применение.

Моноклональные антитела. Каждый В-лимфоцит и его потомки, образовавшиеся в результате пролиферации (т.е. клон), способны синтезировать антитела с паратопом строго определенной специфичности. Такие антитела получили название моноклональных. В природных условиях макроорганизма получить моноклональные антитела практически невозможно. Дело в том, что на одну и ту же антигенную детерминанту одновременно реагируют до 100 различных клонов В-лимфоцитов, незначительно различающихся антигенной специфичностью рецепторов и, естественно, аффинностью. Поэтому в результате иммунизации даже монодетерминантным антигеном мы всегда получаем политональные антитела.

Принципиально получение моноклональных антител выполнимо, если провести предварительную селекцию антителопродуцирующих клеток и их клонирование (т.е. выделение отдельных клонов в чистые культуры). Однако задача осложняется тем, что В-лимфоциты, как и другие эукариотические клетки, имеют ограниченную продолжительность жизни и число возможных митотических делений.

Проблема получения моноклональных антител была успешно решена Д. Келлером и Ц. Милыптейном. Авторы получили гибридные клетки путем слияния иммунных В-лимфоцитов с миеломной (опухолевой) клеткой. Полученные гибриды обладали специфическими свойствами антителопро-дуцента и «бессмертием» раковотрансформированной клетки. Такой вид клеток получил название гибридом. Гибридома хорошо размножается в искусственных питательных средах и в организме животных и в неограниченном количестве вырабатывает антитела. В результате дальнейшей селекции были отобраны отдельные клоны гибридных клеток, обладавшие наивысшей продуктивностью и наибольшей аффинностью специфических антител.

Гибридомы, продуцирующие моноклональые антитела, размножают или в аппаратах, приспособленных для выращивания культур клеток или же вводя их внутрибрюшинно особой линии (асцитным) мышам. В последнем случае моноклональные антитела накапливаются в асцитной жидкости, в которой размножаются губридомы. Полученные как тем, так и другим способом моноклональные антитела подвергают очистке, стандартизации и используют для создания на их основе диагностических препаратов.

Гибридомные моноклональные антитела нашли широкое применение при создании диагностических и лечебных иммунобиологических препаратов.

№ 87 Методы приготовления и применения агглютинирующих, адсорбированных сывороток.

В диагностике инфекционных болезней широко применяются иммунные реакции при идентификации возбудителя: при установлении родовой, видовой и типовой принадлежности микроба (вируса). Для постановки таких реакций необходимы специфические диагностические сыворотки, которые в зависимости от содержания соответствующих антител называются агглютинирующие, преципитирующие, гемолитические, противовирусные.

Агглютинирующие сыворотки. Агглютинирующую сыворотку получают иммунизацией Кроликов (внутривенно, подкожно или внутрибрюшинно) взвесью убитых бактерий, начиная с дозы 200 млн., затем 500 млн., 1 млрд., 2 млрд., микробных тел в 1 мл, с интервалами 5 дней. Через 7—8 дней после последней иммунизации берут кровь и определяют титр антител. Титром агглютинирующей сыворотки называется то максимальное разведение сыворотки, при котором происходит агглютинация с соответствующим микроорганизмом.

Агглютинирующие сыворотки применяются при идентификации микроба в развернутой реакции агглютинации. Если изучаемый микроорганизм агглютинируется сывороткой до титра или до половины значения титра, его можно считать принадлежащим к тому виду, название которого указано на этикетке ампулы.

Неадсорбированные агглютинирующие сыворотки обладают высоким титром — до 1 : 12 800 — 1 : 25 600.

Недостатком таких сывороток является то, что они способны давать групповые реакции агглютинации, так как они содержат антитела к бактериям, имеющим общие антигены в пределах семейства, группы и рода.

Поэтому в настоящее время большинство агглютинирующих сывороток выпускаются адсорбированиими, монорецепторными и адсорбированными поливалентными, содержащими только типовые или видовые антитела и соответствующими или определенному типу или виду микроорганизма. Эти сыворотки не подлежат разведению.

Для получения таких сывороток нрименяют метод Кастелляни — метод адсорбции, который состоит в том, что при насыщении агглютинирующей сыворотки родственными гетерогенными бактериями происходит адсорбция группоных антител, а специфические антитела остаются в сыворотке. В зависимости от полноты истощения групповых агглютининов можно получить монорецепторные сыворотки — сыворотки, имеющие антитела только к одному рецептору-антигену или адсорбированные, поливалентные, дающие реакции агглютинации с двумя — тремя родственными бактериями, имеющими общий антиген, в отношении которого проводилась адсорбция.

Адсорбированные сыворотки применяют при идентификации выделенных возбудителей в реакции агглютинации на стекле (пластинчатый метод).

Агглютинирующие сыворотки наиболее широко применяются при диагностике заболеваний, вызываемых бактериями семейства Enferobacferiaceae. Так, при идентификации эшерихий используются поливалентные и типовые ОК-сыворотки; при дифференциации сальмонелл — набор сывороток: агглютинирующая адсорбированная поливалентная сальмонеллезная О-сыворотка (групп А, В, С, Д, Е) — для определения принадлежности к роду Salmonella, при положительном результате — определяют отдельно с каждой сывороткой (входящей в смесь) серологическую группу и в заключение определяется серологический тип выделенного возбудителя с моно-рецепторными Н-сыворотками сальмонелл, входящих в данную группу.

№ 88 Вакцины. Определение. Современная классификация вакцин. Требования, предъявляемые к современным вакцинным препаратам.

Вакцина — медицинский препарат, предназначенный для создания иммунитета к инфекционным болезням.

Классификации вакцин:

1.Живые вакцины — препараты, действующим началом в которых являются ослабленные тем или иным способом, потерявшие свою вирулентность, но сохранившие специфическую антигенность штаммы патогенных бактерий. Примером таких вакцин являются БЦЖ и вакцина против натуральной оспы человека, в качестве которой используется непатогенный для человека вирус оспы коров.

2.Инактивированные (убитые) вакцины – препараты, в качестве действующего начала включающие убитые химическим или физическим способом культуры патогенных вирусов или бактерий, (клеточные, вирионные) или же извлечённые из патогенных микробов комплексы антигенов, содержащие в своём составе проективные антигены (субклеточные, субвирионные вакцины). В препараты иногда добавляют консерванты и адьюванты.

Молекулярные вакцины – в них антиген находится в молекулярной форме или даже в виде фрагментов его молекул, определяющих специфичность т. е. в виде эпитопов, детерминант.

Корпускулярные вакцины – содержащие в своем составе протективный антиген

Дополнительные материалы:

Микробы, управляющие поведением человека


Похожие статьи: