Методы количественного определения белков

      Комментарии к записи Методы количественного определения белков отключены

РАБОТА 3. КОЛИЧЕСТВЕНОЕ ОПРЕДЕЛЕНИЕ БЕЛКА

В СЫВОРОТКЕ КРОВИ БИУРЕТОВЫМ МЕТОДОМ

Цель работы: ознакомиться с одним из распространённых методов количественного определения белка в сыворотке крови.

Задачи:

  • построить калибровочную кривую по стандартным растворам белка;
  • определить содержание белка в предложенной сыворотке крови;
  • проанализировать полученные результаты и сделать выводы.

Принцип метода. Белки в щелочной среде реагируют с сульфатом меди с образованием комплексных соединений, окрашенных в сине-фиолетовый или красно-фиолетовый цвет (биуретовая реакция). Интенсивность окраски пропорциональна содержанию белка в растворе.

Ход работы

1. Построение калибровочной кривой

Готовят семь рабочих стандартных растворов белка разведением основного стандартного раствора (содержит 4 мг белка в 1 мл) дистиллированной водой, как указано в таблице.

№проб Стандартный раствор, мл Н2О, мл Содержание белка в пробе, мл Еср
0,25 1,75 1,0
0,50 1,50 2,0
0,75 1,25 3,0
1,00 1,00 4,0
1,25 0,75 5,0
1,50 0,50 6,0
1,75 0,25 7,0
Контроль 2,00
Сыворотка

Во все рабочие стандартные растворы и контроль добавляют по 2,5 мл биуретового реактива, перемешивают и оставляют при комнатной температуре на 30 минут для развития окраски. Окрашенные стандартные растворы колориметрируют на ФЭКе против контроля в кюветах на 5 мм с зелёным светофильтром (длина волны 540 нм). Полученные значения оптической плотности используют для построения калибровочной кривой.

2. Количественное определение белка в сыворотке крови

Исследуемую сыворотку крови разбавляют дистиллированной водой в 40 раз (1 мл цельной сыворотки смешивают с 39 мл Н2О).

К 2 мл разбавленной сыворотки добавляют 2,5 мл биуретового реактива и после перемешивания оставляют при комнатной температуре на 30 минут, а затем колориметрируют. Измерение оптической плотности производят так же, как при построении калибровочной кривой (используют тот же контроль, что и для построения калибровочной кривой). Содержание белка в пробе определяют по калибровочной кривой.

Результаты:

Калибровочная кривая

Х = (А / 2 ? 40 ? 100) / 1000 = А ? 2 (г%),

где А – количество белка в пробе, определённое по калибровочной кривой,

А/2 – количество белка (мг) в 1 мл разбавленной в 40 раз сыворотки крови,

100 – для пересчёта на 100 мл сыворотки (для выражения показателя в мг%),

1000 – для перевода единиц в г%.

В сыворотке крови здорового человека содержится 6,5-8 г% белка.

Выводы:

РАБОТА 4. определение концентрации гемоглобина

в крови колориметрическим (унифицированным) методом

Цель работы: ознакомиться с современным, применяемым в клинической практике, методом количественной оценки содержания гемоглобина в крови.

Задачи:

  • освоить унифицированный метод определения содержания гемоглобина в эритроцитарной взвеси, полученной из крови человека;
  • проанализировать полученные результаты и сделать выводы.

Принцип метода. Под действием феррицианида калия и цианида гемоглобин трансформируется в цианометгемоглобин, определяемый фотометрически.

Ход работы. С помощью автоматических пипеток в пробирку вносят 2 мл рабочего реагента и 0,01 мл крови. Через 5 минут пробы колориметрируют на ФЭКе против рабочего реагента в кюветах с толщиной поглощающего слоя 3 мм при длине волны 520-560 нм.

В норме содержание гемоглобина у мужчин колеблется в пределах 13,2-16,4 г%, женщин – 11,5-14,5, детей – 11,5-14,5 и новорожденных – 15-24 г%.

Результаты:

Концентрацию гемоглобина (С) рассчитывают в г% (в г на 100 мл крови):

С = Еоп ? 62,8 (г%),

где: Еоп – экстинкция пробы.

Для выражения концентрации гемоглобина в г/л результат умножают на 10.

Выводы:

РАЗДЕЛ 2. ФЕРМЕНТЫ

РАБОТА 5. ОЗНАКОМЛЕНИЕ С ДЕЙСТВИЕМ НЕКОТОРЫХ ФЕРМЕНТОВ

Цель работы: ознакомиться с каталитическим действием некоторых ферментов пищеварительного тракта (амилазы слюны, пепсина и липазы) и каталазы крови.

Задачи:

  • проделать предложенные реакции;
  • написать уравнения реакций, катализируемых исследуе-мыми ферментами;
  • проанализировать полученные результаты и сделать выводы.

Ферменты (энзимы) – простые и сложные белки, катализирующие определённые химические реакции в организме. Так, амилаза слюны катализирует гидролиз ?-1,4-глюкозидных связей крахмала и гликогена, что приводит к образованию декстринов, а затем мальтозы. Панкреатическая липаза превращает ацилглицерины в глицерол и жирные кислоты. Фермент желудочного сока пепсин ускоряет гидролитический распад белков до пептидов. Каталаза расщепляет пероксид водорода на воду и молекулярный кислород.

При ознакомлении с действием фермента сравнивают результаты энзиматической реакции с контрольными пробами, полученными в отсутствие фермента.

1. Ознакомление с действием амилазы слюны

Ход работы. В две пробирки наливают по 5 мл 0,2%-го раствора крахмала, в одну из них добавляют 0,5 мл слюны, а в другую (контроль) – 0,5 мл дистиллированной воды. Содержимое каждой пробирки перемешивают, и пробы помещают в термостат при 37?С на 15 минут. Затем в обе пробирки добавляют по 1-2 капли раствора Люголя (раствор йода в растворе KI). В контрольной пробирке появляется синее окрашивание, а в опытной (с амилазой слюны) такая окраска не развивается.

Уравнение реакции действия амилазы слюны на крахмал:

2. Ознакомление с действием липазы

Ход работы. В две пробирки наливают по 4 мл дистиллированой воды, 5 мл 1%-го раствора бикарбоната натрия и 1 мл растительного масла. Содержимое пробирок энергично встряхивают до образования эмульсии и в обе пробирки добавляют по 3 капли 0,5%-го спиртового раствора фенолфталеина. Затем в одну пробирку приливают 1 мл раствора липазы, а в другую (контроль) – 1 мл дистиллированной воды. Содержимое снова энергично встряхивают и пробирки ставят в термостат при 37?С на 15-20 минут. В пробирке с липазой раствор становится менее окрашенным или обесцвечивается, в контрольной — остается розовым.

Уравнение реакции действия панкреатической липазы на триацилглицеролы (ТАГ):

3. Ознакомление с действием пепсина

Ход работы. В две пробирки наливают по 2 мл 1%-го раствора альбумина и денатурируют его нагреванием. Пробирки охлаждают до комнатной температуры, а затем в одну из них добавляют 1 мл раствора пепсина, а в другую (контроль) – 1 мл дистиллированной воды. Обе пробы помещают в термостат при 37?С на 15 минут. В пробирке с ферментом муть исчезает.

Уравнение реакции действия пепсина на альбумин:

4. Ознакомление с действием каталазы

Ход работы. В две пробирки наливают по 5 мл свежеприготовленного 5%-го раствора перекиси водорода и в одну из них добавляют 1 каплю крови, в которой содержится фермент каталаза. В пробирке с каталазой наблюдается интенсивное выделение пузырьков кислорода.

Уравнение реакции разложения перекиси водорода каталазой:

Выводы:

РАБОТА 6. изучение свойств ферментов. Влияние на активность фермента реакции среды

и температуры, Субстратная специфичность

Цель работы: на примере амилазы слюны ознакомиться с некоторыми специфическими свойствами ферментов.

Задачи:

  • проделать необходимые реакции;
  • проанализировать полученные результаты и сформулиро-вать выводы;
  • написать уравнения реакций каталитического расщепле-ния крахмала амилазой слюны.

Скорость ферментативных реакций зависит от температуры и концентрации водородных ионов в среде. Каждый фермент имеет свой оптимум рН и температуры, при которых активность фермента максимальна.

1. Влияние температуры на активность амилазы

Ход работы. В три пробирки вносят по 1 мл разбавленной в 10 раз слюны, одну из них помещают в термостат с температурой 37?С, вторую – в кипящую водяную баню и третью – в лёд. Через 5 минут во все пробирки добавляют 5 мл 0,2%-го раствора крахмала, перемешивают. Первую и вторую пробирки помещают в термостат, а третью – в прежние условия (лёд). Через 10 минут во все пробы добавляют по 3 капли раствора Люголя и перемешивают. Сравнивают окраску растворов и объясняют причину выявленных различий.

2. Определение оптимума рН активности амилазы

Ход работы. Перед началом работы готовят раствор амилазы разведением слюны в 10 раз. Для этого собирают 0,5 мл слюны в мерную пробирку, добавляют 4,5 мл дист. Н2О и раствор тщательно перемешивают стеклянной палочкой.

В восемь пронумерованных пробирок наливают по 2 мл фосфатного буферного раствора соответственно с рН 5,4; 5,8; 6,2; 6,6; 6,8; 7,0; 7,4; 8,0. Во все пробирки добавляют по 5 мл 0,4%-го раствора крахмала (приготовленного на 0,1% растворе NaCl) и содержимое перемешивают стеклянной палочкой.

Затем быстро добавляют («веером») по 0,5 мл разведенной в 10 раз слюны, сначала в 5- и 4-ю пробирки, затем в 3-ю и 6-ю, далее во 2-ю и 7-ю и, наконец, в 1-ю и 8-ю пробирки. После добавления слюны содержимое каждой пробирки сразу же перемешивают. Отмечают время перемешивания раствора в 5-й пробирке, пробы помещают в термостат (37?С).

Через 2-3 минуты 1 каплю жидкости из 5-й пробирки переносят стеклянной палочкой на предметное стекло и добавляют 1 каплю раствора Люголя. Если жёлтая капля Люголя окрашивается в синий или красно-коричневый цвет, то выжидают ещё 2 минуты и снова повторяют реакцию на наличие крахмала с каплей раствора из 5-й пробирки. Реакцию на предметном стекле повторяют через каждые 2 минуты до появления оранжево-красного или жёлто-коричневого цвета. После этого реакцию во всех пробирках быстро останавливают, приливая во все пробирки по 5 капель раствора Люголя, перемешивают и сравнивают окрашивание.

Оптимальное значение рН действия для амилазы определяют по пробирке с самым светлым (светло-жёлтым) окрашиванием.

Примечание. При низкой комнатной температуре после добавления слюны пробы помещают в термостат при 37?С, периодически (через 2-3 минуты) проверяя раствор в 5-й пробирке на наличие крахмала.

3. Специфичность действия амилазы

Одним из свойств ферментов является специфичность их действия. Ферменты специфичны по отношению к типу катализируемой реакции и к субстрату, на который они действуют. Высокая специфичность ферментов определяется тем, что только строго определённые функциональные группы активного центра фермента участвуют в образовании фермент-субстратного комплекса. Амилаза обладает относительной специфичностью, гидролизуя ?-1,4-гликозидные связи в крахмале и других соединениях, имеющих такой тип связи.

Ход работы. В две пробирки вносят по 0,5 мл слюны и в одну из них добавляют 2 мл 0,5%-го раствора крахмала, а в другую – 2 мл 0,5%-го раствора сахарозы. Содержимое каждой пробирки перемешивают стеклянной палочкой, и пробы помещают в термостат при 37?С на 20 минут. Затем в обе пробирки добавляют по 2 мл 10%-го раствора гидроксида натрия, по 0,5 мл 5%-го раствора сульфата меди и после перемешивания нагревают до кипения. В пробирке, содержащей крахмал, выпадает красный или жёлтый осадок (положительная проба Троммера).

Выводы:

РАБОТА 7. ОПРЕДЕЛЕНИЕ АКТИВНОСТИ АМИНОТРАНСФЕРАЗ В СЫВОРОТКЕ КРОВИ ПО МЕТОДУ КИНГА

Цель работы: ознакомиться с одним из методов колориметрического определения активности аминотрансфераз, широко используемых в медицинской практике для выявления заболеваний.

Задачи:

  • ознакомиться с предложенным методом определения активности аминотрансфераз в сыворотке крови;
  • провести анализ и сделать выводы.

Определение активности аминотрансфераз (трансаминаз) крови имеет большое диагностическое значение. Например, при инфаркте миокарда в крови увеличена активность аспартатаминотрансферазы (АсАТ), при инфекционном гепатите – активность аланинамино-трансферазы (АлАТ). Кроме того, в клинической практике рассчитывают коэффициент де Ритиса (АсАТ/АлАТ), который в норме составляет 1,33±0,42. При сердечно-сосудистых патологиях коэффициент увеличивается, а при печёночных – уменьшается.

Принцип метода. Метод Кинга основан на способности аланин- и аспартаттрансаминаз конденсировать 2,4-динитрофенилгидразин и продукты дезаминирования аминокислот — пировиноградную и щаве-левоуксусную кислоты:

Методы количественного определения белков

Ход работы. В одну пробирку (опытная проба) вносят 0,2 мл сыворотки крови, в другую (контрольная проба) — 0,2 мл дистиллированной воды; в обе пробирки добавляют по 0,5 мл 2%-го раствора аспарагиновой кислоты и по 0,5 мл 0,6%-го раствора ?-кето-глутаровой кислоты. Пробы перемешивают и помещают на 60 минут в термостат (37?С), после чего каталитическое действие фермента останавливают добавлением в обе пробы по 1 мл 0,1%-го раствора 2,4-динитрофенилгидразина и вновь помещают в термостат на 15 минут. Затем добавляют по 10 мл 0,4 н раствора NaOH и оставляют на 1-2 минуты до появления окраски. Пробы колориметрируют на ФЭКе с зелёным светофильтром в кюветах с толщиной слоя 10 мм.

Активность аминотрансфераз выражают в условных единицах, умножая оптическую плотность на 100.

У здоровых людей активность аспартатаминотрансферазы в сыворотке крови составляет 10-35 единиц.

Результаты:

Выводы:

РАЗДЕЛ 3. ВИТАМИНЫ

РАБОТА 8. КОЛИЧЕСТВЕННОЕ ОПРЕДЕЛЕНИЕ АСКОРБИНОВОЙ КИСЛОТЫ В ПИЩЕВЫХ ПРОДУКТАХ И МОЧЕ

Цель работы: ознакомиться с одним из методов количественного определения витамина в пищевых продуктах и биологических объектах.

Задачи:

  • определить содержание витамина С в пищевых продуктах и моче;
  • сравнить полученные результаты и сделать выводы.

Принцип метода. Метод основан на способности витамина С восстанавливать 2,6-дихлорфенолиндофенол:

Методы количественного определения белков

Методы количественного определения белков

2,6-дихлорфенолиндофенол в щелочной среде имеет синюю окраску, в кислой среде – красную, в восстановленном состоянии – бесцветную:

Методы количественного определения белков

Методы количественного определения белков

При определении количества витамина С исследуемый раствор, подкисленный соляной кислотой, титруют 2,6-дихлорфенолиндофено-лятом натрия. Как только всё количество витамина С, имеющееся в исследуемом растворе, окислится, раствор приобретает розовую окраску, характерную для 2,6-дихлорфенолиндофенола в кислой среде.

1. Определение количества витамина С в пищевых продуктах

Аскорбиновая кислота не синтезируется в организме человека. Основным источником этого витамина являются, в основном, свежие овощи и фрукты. В различных пищевых продуктах содержится следующее количество витамина С (в мг%):

чёрная смородина – 100-400;

укроп – 120-135;

лимон – 40-55;

капуста (свежая и квашеная) – 30-40;

томаты – 20-40;

лук зелёный – 16-33;

яблоки северные – 20-40;

яблоки южные – 5-17;

смородина красная – 5-15;

картофель – 7-10;

бананы – 7-10;

печень – 20-50;

селезёнка – 20-50;

кумыс – 20-25.

Источником витамина С может быть хвоя ели и сосны, содержащая 150-250 мг% (иногда до 400 мг%) аскорбиновой кислоты.

А. Определение содержания витамина C в плодах шиповника

Ход работы

а) гомогенизация биоматериала и экстракция витамина С. 1 г сухих плодов измельчают в фарфоровой ступке с 2 мл дистиллированной воды, смесь количественно переносят в мерную колбу на 25 мл и доводят объём водой до метки. Через 10 минут смесь фильтруют через бумажный фильтр в мерную пробирку.

б) количественное определение витамина C в экстракте. К 2 мл полученного фильтрата добавляют 2-3 капли 10%-го раствора соляной кислоты и 2 мл дистиллированной воды. Содержимое переливают в колбочку на 50 мл и титруют 0,001н раствором 2,6-дихлорфенолиндо-фенола до появления розовой окраски, не исчезающей в течение 30 секунд.

в) расчёт:

Х = (0,088 ? А ? 25 ? 100) / Б ? В (мг%),

где А – количество раствора 2,6-дихлорфенолиндофенола (в мл), пошедшее на титрование;

В – количество сухого вещества в г, взятое для анализа;

Б – количество вытяжки в мл, взятое для титрования;

25 – общее количество вытяжки в мл;

0,088 – количество аскорбиновой кислоты в мг, эквивалентное 1 мл 0,001н раствора 2,6-дихлорфенолиндофенола.

Б. Определение содержания витамина С в пищевых продуктах

Ход работы

а) гомогенизация биоматериала и экстракция витамина С. Этот этап работы выполняют так же, как в предыдущем случае (при определении содержания аскорбиновой кислоты в шиповнике).

б) количественное определение витамина C в экстракте. 10 мл фильтрата приливают в колбочку на 50 мл, подкисляют 2-3 каплями 10%-го раствора соляной кислоты и титруют так же, как в предыдущем случае.

в) расчёт делают по той же формуле, что и при определении витамина C в шиповнике, только количество вытяжки (Б), взятое для титрования, будет равно 10 мл.

Примечание: если исходный цвет фильтрата сильно окрашен (например, у моркови или петрушки), берут 2 мл фильтрата и 8 мл дистиллированной воды, но это учитывают при расчётах.

2. Определение содержания витамина С в моче

Ход работы. В коническую колбу вносят 10 мл мочи и 10 мл дистиллированной воды. Добавляют 1 мл концентрированной уксусной кислоты и титруют 0,001н раствором 2,6-дихлорфенолиндо-фенола до появления розовой окраски, не исчезающей в течение 30 секунд.

Расчёт:

Х = (0,088 ? А ? 100) / 10 (мг %),

где А – количество 0,001н раствора 2,6-дихлорфенолиндофенола в мл, пошедшее на титрование;

10 – количество мочи в мл, взятое на титрование;

100 – коэффициент для выражения результата в мг %;

0,088 – эквивалент аскорбиновой кислоты.

Выводы:

Й семестр

Дополнительные материалы:

Биохимия. Качественные реакции для определения белков, аминокислот и углеводов (С. Смирнов)


Похожие статьи: