Методические указания к заданию № 2

      Комментарии к записи Методические указания к заданию № 2 отключены

Рассматривается строительство животноводческого комплекса. Строительство комплекса предполагает выполнение работ, список которых задан: A,B,C,D,E,F,G,H,K,L,M,N. Последовательность выполнения работ определяется сетевым графиком (рис.6). Для каждой работы задано время её выполнения (табл. 6).

Время выполнения работ Таблица 6

№ работы Работа Время выполнения работы дни
A
B
C
D
E
F
G
H
K
L
M
N

Определить: 1) Временные характеристики событий, критическое время выполнения всех работ, а также критические события; 2) Полный резерв времени для каждой работы, критические работы; 3) Построить сетевой график критических работ и путей.

Методические указания к заданию № 2

Решение.1) Определим временные характеристики событий: раннее время наступления события Методические указания к заданию № 2 , позднее время наступления события Методические указания к заданию № 2 и резерв времени события ? = Методические указания к заданию № 2Методические указания к заданию № 2 .

Сначала найдём значения раннего времени наступления каждого события. Первым определим раннее время начального события (событие 0). Полагаем, что раннее время начального события равно 0: Методические указания к заданию № 2 . Методические указания к заданию № 2 Найдём раннее время 1 события Методические указания к заданию № 2 . Рассмотрим работы, входящие в событие 1

(рис. 7). Это работа А, которая начинается событием 0. Так как в событие 1 входит одна работа, то Методические указания к заданию № 2 =0+7=7 дней.

Определим раннее время 2 события Методические указания к заданию № 2 . Рассмотрим работы, входящие в событие 2 (рис. 8). Это работы B, которая начинается событием 0, и работа D, которая начинается событием 1. Для каждой из работ найдём сумму раннего времени начала работы и её продолжительности. Раннее время 2 события Методические указания к заданию № 2 равно максимуму этих сумм:Методические указания к заданию № 2 = max{0+11;7+4}=11 дней.

Методические указания к заданию № 2

Вычислим раннее время 3 события Методические указания к заданию № 2 . Рассмотрим работы, входящие в событие 3 (рис. 9). Это работы С, которая начинается событием 1, и F, которая начинается событием 2. Аналогично времени Методические указания к заданию № 2 определяем время Методические указания к заданию № 2 : Методические указания к заданию № 2 = max{7+8;11+6}=17 дней.

Найдём раннее время 4 события Методические указания к заданию № 2 . Рассмотрим работы, входящие в событие 4 (рис. 10). Это работы Еи G. Тогда раннее время 4 события Методические указания к заданию № 2 :

Методические указания к заданию № 2 Методические указания к заданию № 2 = max{7+15;17+9}=26 дней.

Определим раннее время 5 события Методические указания к заданию № 2 . Входящие работы H и L (рис. 11). Тогда Методические указания к заданию № 2 = max{17+13;26+3}=30 дней.

Вычислим время Методические указания к заданию № 2 . Входящие работы K, M и N (рис. 12). Методические указания к заданию № 2 = max{17+16;26+5;30+2}=33 дня.

Определяем критическое время: Методические указания к заданию № 2 = Методические указания к заданию № 2 =33 дня.

Методические указания к заданию № 2

Найдём значения позднего времени наступления каждого события.

Сначала найдём позднее время конечного события (событие 6). Полагаем, что позднее время конечного события равно: Методические указания к заданию № 2 .

Найдём позднее время 5 события Методические указания к заданию № 2 . Рассмотрим работы, выходящие из события 5 (рис. 13). Это работа N, которая заканчивается событием 6. Так как выходящая из события 5 работа одна, то позднее время 5 события равно: Методические указания к заданию № 2 33–2=31.

Определим позднее время 4 события Методические указания к заданию № 2 . Рассмотрим работы, выходящие из события 4 (рис. 14). Это работы L, которая заканчивается событием 5, и M, которая заканчивается событием 6. Для каждой из работ найдём разность позднего времени окончания работы и его продолжительности. Позднее время события 4, Методические указания к заданию № 2 равно минимуму этих разностей: Методические указания к заданию № 2 = min{31–3 ;33–5}=28.

Методические указания к заданию № 2

Вычислим позднее время 3 события Методические указания к заданию № 2 . Рассмотрим работы, выходящие из события 3 (рис. 15). Это работа G, которая заканчивается событием 4, работа H, которая заканчивается событием 5, и работа K, которая заканчивается событием 6. Аналогично позднему времени 4 события определяем позднее время 3 события Методические указания к заданию № 2 : Методические указания к заданию № 2 = min{28–9;31–13;33–16}=17.

Найдём позднее время 2 события Методические указания к заданию № 2 . Рассмотрим работы, выходящие из события 2

(рис. 16). Это работа F,которая заканчивается событием 3. Тогда позднее время 2 события равно: Методические указания к заданию № 2 33–2=31.

Определим позднее время 1 события Методические указания к заданию № 2 . Выходящие из события 1 работы – это работы D, C и E (рис. 17). Позднее время события 1 равно: Методические указания к заданию № 2 = min{11–4;17–8;28–15}=7.

Методические указания к заданию № 2

Методические указания к заданию № 2 Вычислим позднее время начального события Методические указания к заданию № 2 . Входящие в событие 0 работы – это работы K, M и N (рис. 18). Находим позднее время начального события: Методические указания к заданию № 2 =min{7–7;11–11}=0.

В качестве промежуточной проверки сверяется значение Методические указания к заданию № 2 . Оно должно равняться 0. Вычислим резервы времени событий, также определим критические события (резервы времени которых равны 0). Резерв времени события равен: Методические указания к заданию № 2 ; а также критические события:

Методические указания к заданию № 2 = 0 – 0 = 0, 0 событие критическое;

Методические указания к заданию № 2 = 7 – 7 = 0, 1 событие критическое;

Методические указания к заданию № 2

Методические указания к заданию № 2 = 11 – 11 = 0, 2 событие не критическое; Методические указания к заданию № 2 = 17 – 17 = 0, 3 событие критическое; Методические указания к заданию № 2 = 28 – 26 = 2, 4 событие некритическое; Методические указания к заданию № 2 = 31 – 30 = 1, 5 событие некритическое; Методические указания к заданию № 2 = 33 – 33 = 0, 6 событие критическое.

Резервы времени каждого события отметим на сетевом графике (рис. 19).

2) Полный резерв времени работы Методические указания к заданию № 2 равен разности позднего времени её окончания и раннего времени её начала минус продолжительность работы: Методические указания к заданию № 2 , где Методические указания к заданию № 2 – позднее время окончания работы, Методические указания к заданию № 2 – раннее время её начала, Методические указания к заданию № 2 – продолжительность работы. Вычисления удобнее производить с помощью таблицы (табл. 7).

Полный резерв времени можно вычислять последовательно, по списку работ, а можно порядок вычислений осуществлять по номеру начала работы. Для работ с одним началом порядок очерёдности определяется по номеру окончания работы. Например, сначала вычисляется полный резерв времени для работ 0 – 1, 0 – 2, потом 1 – 2, 1 – 3, 1 – 4, 1 – 5, потом 2 – 3, 2 – 5, 3 – 4, 3 – 5, 3 – 6, 4 – 5, 4 – 6.

Временные характеристики работ Таблица 7

Начало и окончание работы Работа Раннее время начала Позднее время окончания Время работы Полный резерв времени работы
0-1 A
0-2 B
1-2 D
1-3 C
1-4 E
2-3 F
3-4 G
3-5 H
3-6 K
4-5 L
4-6 M
5-6 N

Примечание:шрифтом выделены критические работы.

3) Строим сетевой график критических работ: сначала располагаем на графике критические события: 0, 1, 2, 3, 6; а потом их соединяем критическими работами: 0–1, 0–2, 1–2, 2–3, 3–6 (рис.20).

Методические указания к заданию № 2

Дополнительные материалы:

Задание №2 в ЕГЭ по обществознанию 2018


Похожие статьи: