Механизмы повреждения клеточных структур

      Комментарии к записи Механизмы повреждения клеточных структур отключены

I. Липидный механизм

  1. Свободнорадикальное и перикисное окисление липидов

Свободные радикалы – это атомы (или молекулы) с неспаренными электронами на внешних атомных или молекулярных орбитах, отличающиеся высокой реакционной способностью.

Два электрона одной орбитали (спаренные) имеют противоположные спины (направление вращения электрона вокруг собственной оси, которое создает магнитное поле с параллельным, или антипараллельным вектором относительно магнитного поля Земли), а отсюда и нулевой общий магнитный момент.

Неспаренный электрон придает атому (или содержащей его молекуле) магнитный момент, который предопределяет его химическую реакционную способность.

Неспаренные электроны стремятся ликвидировать феномен неспаренности двумя путями.

  • Взаимодействием с другими свободнорадикальными атомами (или молекулами) с образованием химически инертного продукта;
  • «Выдергиванием» неспаренного электрона с противоположным спином из внешней оболочки свободных или связанных атомов. Объектом такого воздействия являются переходные металлы, богатые неспаренными электронами, в результате взаимодействия радикал становится химически инертным (тушится), а металл изменяет заряд. Но свободные радикалы способны «выдергивать» электроны и из биоорганических соединений, которые превращаются в свободнорадикальные (перикисные) соединения с патологическим нарушением биохимических процессов.

<p>Свободные радикалы постоянно образуются в организме и попадают в него из окружающей среды (все виды излучения).

Свободные радикалы не бывают «хорошими» или «плохими». Они необходимы организму для выполнения ряда функции, например в дыхательной цепочке, но оказывают повреждающее действие при увеличении их количества.

В процессе биологического окисления образуются супероксидный радикал О2? и гидроксидный радикал ?ОН (свободные радикалы), оксид азота NО? (преимущественно участвует в регуляции сосудистого тонуса) и перекись водорода Н2О2(последняя не является свободным радикалом, но в результате менталлокатализа превращается в гидроксильный радикал). Н2О2 легко разрушается каталазой.

супероксидный радикал О2? генерируется лейкоцитами при фагоцитозе, образуется в митохондриях в процессе окислительных реакций, в тканях при метаболической трансформации катехоламинов, синтезе простогландинов. Некоторые реакции сопровождаются образованием гидроксильного радикала ?ОН и пероксида водорода Н2О2 (необходимых киллерам и фагоцитам).

Кислородные радикалы обеспечивают свободнорадикальное окисление субстратов, основными из которых являются полиненасыщенные жирные кислоты клеточных мембран. Это влияет на полярность гидрофобных углеводородных хвостов жирных кислот, которые образуют липидный бислой мембраны. В результате изменяется структура мембраны, ее проницаемость и ионный транспорт. В физиологических условиях это один из способов регуляции функции клетки.

Оксид азота NO· легко проходит через мембранные структуры и в качестве посредника обуславливает расслабление гладких мышц стенки сосудов, ЖКТ, бронхов и других полых органов, выполняет роль нейротрансмиттера, а также антигрегантную и адгезивную функцию. Особое внимание заслуживает противомикробное и противопаразитарное действие NO·. Именно этим объясняется генерация больших количеств оксида азота клетками эпителия бронхов, а также иммунной системы (лейкоциты, макрофаги). Чужеродные липополисахариды в указанных клетках часто одновременно активируют и мембранную НАДФН-оксидазу, генерирующую супероксид O2·¾, который нейтрализует NO· с образованием пероксинитрита (ONOO-). При физиологическом рН превращается в слабую пероксинитрокислоту.

Цитотоксическое действие пероксинитрита объясняется возможностью его распада на NO2- и OH·. Гидроксильный радикал способен запускать окисление липидов, белков и нуклеиновых кислот.

Физиологическое значение свободных радикалов заключается в регуляции генетической программы и апоптоза, образовании катехоламинов, стероидных гормонов и др., детоксикации ксенобиотиков, медиаторов и гормонов, разрушении фагоцитированных структур в фагоцитах.

ПОЛ – физиологический процесс регуляции клеточной активности, однако при избытке свободных радикалов приводит к гибели клетки.

Патологический эффект в организме возникает при избыточной продукции свободных радикалов, или при дефиците антиоксидантных факторов.

При избытке образования свободных радикалов структуры клетки разрушаются, и она гибнет.

Антиоксидантная система подразделяется на неэнзимную и энзимную.

a) Неэнзимные антиоксиданты являются донорами электронов для радикальных молекул, превращают их в инертные молекулы, но являются «двуликими» и сами становятся свободнорадикальными. Выполняют лишь буферную роль в антиоксидантной защите организма.

  • водорастворимые соединения (аскорбиновая кислота, мочевая кислота, глютатион);
  • жирорастворимые соединения (a-токоферол, ретинол).
  • спирты и тиолы (цистеин, дитиотретиол, маннитол, тиомочевина, этанол и др.)

b) Ферментные антиоксиданты способны выступать в качестве доноров или акцепторов свободных электронов, являются основной защитой организма от оксидативного стресса.

  • супероксиддисмутаза нейтрализует свободнорадикальный кислород с образованием перекиси водорода и атомарного кислорода;
  • каталаза разлагает перекись водорода;
  • глутатионпероксидаза в цитозоле клеток разлагает перекись водорода.

c) Липидные антиоксидантные «ловушки» (перехват свободных радикалов) – это холестерол клеточных мембран, гидрофильные головки фосфолипидов клеточных мембран.

  1. Активация фосфолипаз ионами Са++, что приводит к расщеплению структурных элементов мембран и образованию лизофосфолипидов (детергентов).
  1. Накопление свободных жирных кислот, обладающих детергентными свойствами.

II. Кальциевые механизмы

Существует 2 вида Ca++ насосов: Са++ АТФаза и Na+/Ca++ АТФаза.

Если Са++ появляется в цитоплазме, то начинается активация ферментов. В зависимости от происхождения клетки, Са++ может активировать разные функции: в мышечных – сокращение, в нервных – возбуждение, в тучных клетках – выброс гистамина и т. д.

Накопление Са++ в цитоплазме мышечной клетки приводит к активации ферментов: кальмодулина (сокращение мышечного волокна), протеинкиназ (синтез белка и, следовательно гипертрофия мышц).

Но, если Са++ чуть больше, начинается активация фосфолипаз (расщепление фосфолипидов мембран, причем мембран как клеточной, происходит аутолиз клетки, так и мембран органелл, например, лизосом, лизосомальный аутолиз клетки,повреждение мембран митохондрий с последующим выходом из них Са++ (митохондрии – аккумулируют Са++ ).

Активации лизосомальных ферментов способствует изменение pH в кислую сторону (аналогично перевариванию в ЖКТ).

Основные проявления повреждения клеток:

1. Дистрофия – это нарушение обмена веществ в клетке (трофики), сопровождающееся нарушением функции и структуры клетки и ведущее к ее гибели.

Основные механизмы дистрофии:

    • синтез аномальных веществ в клетке (например, ?-амилоид при болезни Альцгеймера);
    • трансформация — избыточное превращение общих исходных продуктов обмена веществ (жиры, белки, углеводы) в продукты одного вида обмена веществ (углеводы);
    • декомпозиция (фанероз) – накопление в тканях продуктов нарушенного обмена веществ вследствие распада структур клетки и межклеточного вещества;
    • инфильтрация (например, отложение холестерина в стенке сосуда).

2. Дисплазия – это нарушение развития клеток, проявляющееся стойким нарушением их структуры и функции, ведущее к нарушению их жизнедеятельности. Вызывают дисплазии различные факторы, повреждающие клеточный геном. В отличие от дистрофий дисплазии необратимы. Основной механизм дисплазий – нарушение дифференцировки клеток.

3. Некроз – это необратимая гибель клеток.

Стадии умирания клетки:

    • Паранекроз – сходное с гибелью обратимое изменение обмена веществ и функционирования клетки под влиянием патогенного фактора.
    • Некробиоз – необратимое состояние между жизнью и смертью, агония клетки.
    • Некроз – гибель клетки.
    • Аутолиз – саморазрушение клеточных структур и клетки в целом. Механизмы аутолиза – гидролиз компонентов клеток и межклеточного вещества под влиянием ферментов лизосом (основной) и свободнорадикальное и перекисное окисление липидов.

Виды некроза:

a) Морфологически:

  • коагуляционный (сухой) – преобладание процессов уплотнения, свертывания и обезвоживания, развивается в тканях, богатых белками (сердце, мышцы, печень, почки).
  • колликвационный (влажный) – разжижение, размягчение с образованием кист и полостей, развивается в тканях, богатых жидкостью (мозг).

b) Анатомически:

  • инфаркт – это некроз в результате прекращения кровоснабжения органа (или ткани).
  • гангрена – вид некроза тканей, соприкасающихся с внешней средой (сухая и влажная).
  • секвестр – отделение омертвевшего участка от живых тканей (например, при остеолмиелите).

4. Апоптоз – запрограммированная, активная (энергозатратная) форма гибели клеток, проявляющаяся уменьшением ее размеров, конденсацией и фрагментацией хроматина, уплотнением мембраны без выхода содержимого в окружающую среду.

Считается, что термин апоптоз предложил древнеримский врач Гален. В процессе наблюдения за природой он заметил, что если надломить ветку дерева, с которой уже начали опадать листья, то листопад прекращается, а листья, хотя и меняют цвет, остаются на ветке. То есть опадание листьев, в отличие от их омертвения на сломанной ветке, — физиологический процесс, преднамеренное самоубийство листьев.

Сегодня термин апоптоз, буквально означающий «опадание листьев», применяется к физиологическому явлению — самоубийству клеток, т.е. генетически запрограммированной гибели клеток. Другими словами существует особая генетическая программа, реализация которой при определенных условиях приводит клетку к гибели. В современную науку использование термина апоптоз введено Керром (J.F.R. Kerr) в 1972 году.

Апоптозом управляют особые гены: стимулирует апоптоз ген р53 (ему принадлежит важнейшая роль в противоопухолевой защите), ингибирует апоптоз – ген bcl2 (относится к протоонкогенам из-за его способности предотвращать апоптоз и сохранять клетки с мутациями).

Апоптоз противопоставляется другой распространенной форме гибели клеток – некрозу.

Механизмы повреждения клеточных структур

Рис. 2.2. Сравнительное изображение развития некроза и апоптоза клеток.

Апоптоз проявляется уменьшением объема клетки в противоположность ее набуханию при некрозе; конденсацией и фрагментацией хроматина; снижением трансмембранного потенциала митохондрий; уплотнением цитоплазматической мембраны без выхода содержимого в окружающую среду. В результате фагоцитоза, которому клетки подвергаются уже в процессе апоптоза, их содержимое не выделяется в окружающую среду, как это бывает при некрозе, когда вокруг гибнущих клеток скапливаются активные внутриклеточные компоненты, включая энзимы, закисляется среда, что способствует гибели других клеток и развитию очага воспаления. Апоптоз поражает индивидуальные клетки и практически не отражается на их окружении.

Стадии апоптоза:

I. Индукторная. Сигналами к развитию апоптоза (индукторами апоптоза) являются внеклеточные (антигены, гормоны (например, кортикостероиды), цитокины, УФ- и g-излучение, нагревание) и внутриклеточные (повреждение хромосом и дефицит сигналов) факторы. К универсальным индукторам относятся также нарушение осмотического равновесия, высокое содержание Ca++ и NO. Индукторы апоптоза в свою очередь запускают ферменты (каспазы), которые регулируют весь процесс апоптоза. Эта стадия подразумевает прохождение неких контрольных точек, в которых клетке предоставляется выбор между индукцией и блокадой апоптоза, т. е. данная стадия еще является обратимой. После их прохождения клетка вступает в следующую необратимую фазу апоптоза.

II. Эффекторная – в клетке происходит снижение трансмембранного потенциала митохондрий, развивается массовый протеолиз и расщепление ядерной ДНК с формированием крупных фрагментов (олигонуклеосом и нуклеосом. Такая фрагментация считается биохимическим маркером апоптоза, а на ее выявлении основаны современные методы диагностики апоптоза.

III. Деградация клетки.

Роль апоптоза:

  • Поддержание постоянства численности клеток (своего рода контроль перенаселения.
  • Определение формы организма и его частей (например, наблюдается интенсивный апоптоз нервных клеток в процессе формирования коры у зародыша на 12-23-й неделях беременности).
  • Обеспечение правильного соотношения численности клеток различных типов (быстрая атрофия гормон-зависимых тканей при снижении концентрации соответствующих гормонов, например, в женских половых органах в течение менструального цикла, или в простате при снижении концентрации андрогенов).
  • Удаление генетически дефектных клеток.
  • Селекция лимфоцитов и регуляция иммунных процессов.

Механизмы повреждения клеточных структур

Рис. 2.3. Схема клеточного цикла.

Ингибиторы апоптоза:

  • мутация Р53;
  • теломераза;
  • интерферон j.

Воздействие радиации вызывает (через свободно-радикальное повреждение) мутации и изменение в структуре ДНК. В результате – клетка остается в G1-фазе митоза (если она входит в S-фазу, то происходит апоптоз). Мутационная форма белка Р53 не обладает способностью останавливать клеточный цикл, это явление наблюдается у опухолевых клеток

Теломераза – фермент, обеспечивающий восстановление длины теломерного (концевого) участка хромосомной ДНК. Каждое деление делает хромосому короче на 10-20 теломерных фрагментов. Что дает возможность произвести только 50 делении (лимит Хайфлика).

У человека теломераза функционирует только в эмбриональных клетках и семенниках, вырабатывающих сперматозоиды в течение всей жизни. В опухолевых клетках теломераза активна.

Патология, обусловленная нарушением апоптоза:

A) Ослабление апоптоза

  • аутоиммунные процессы (семейный аутоиммунный лимфопролиферативный синдром, системная красная волчанка, ревматоидный артрит);
  • злокачественные опухоли (лимфома Беркитта, лейкозы, солидные опухоли).

b) Ускорение апоптоза

  • врожденные уродства (волчья пасть, заячья губа и др.);
  • болезни крови (миелодисплазии, анемии (железо- фолио- В12 – дефицитные), тромбоцитопения, нейтропения).
  • инфекционные заболевания (СПИД, бактериальный сепсис и др.);
  • дистрофические заболевания нервной системы (боковой амиотрофический склероз, болезнь Альцгеймера, спинальная мышечная атрофия);
  • другие заболевания (инфаркт миокарда, токсические гепатиты).

IV. Компенсаторные механизмы клетки при повреждении.

Дополнительные материалы:

Обмен веществ. Ускоряем метаболизм, худеем.


Похожие статьи:

  • Клеточные механизмы компенсации при повреждении

    Патогенетические звенья повреждающих факторов на уровне клетки I.Нарушение процессов энергетического обеспечения протекающих в клетке: 1.Снижение…

  • Клеточные мембраны и структуры клеточной поверхности

    Единство и многообразие клеток Клеточная теория Как известно, организм состоит из клеток и образуемого ими межклеточного вещества. Роль клеток в…

  • Viii. структура клеточных мембран

    Биологические мембраны различаются как по функции, так и по структуре, однако всем им присущи следующие основные свойства: – мембраны представляют собой…