Функции цитокининов в развитии растений

      Комментарии к записи Функции цитокининов в развитии растений отключены

Функции цитокининов в развитии растений очень многообразны:

  • контроль пролиферации клеток;
  • координация роста и развития растений в зависимости от доступности минерального и органического питания;
  • поддержание апикальной меристемы побега и ингибирование развития корневой системы;
  • предотвращение старения листьев.

В контроле большинства онтогенетических процессов цитокинины являются антагонистами ауксинов и гиббереллинов[1].

Этилен

Этиле?н — органическое химическое соединение, описываемое формулой С2H4. Является простейшим алкеном (олефином), изологом этана. При нормальных условиях — бесцветный горючий газ со слабым запахом. Частично растворим в воде (25,6 мл в 100 мл воды при 0 °C), этаноле (359 мл в тех же условиях). Содержит двойную связь и поэтому относится к ненасыщенным или непредельным углеводородам. Является фитогормоном.

Биологическая роль

Этилен — первый из обнаруженных газообразных растительных гормонов, обладающий очень широким спектром биологических эффектов. Этилен выполняет в жизненном цикле растений многообразные функции, среди которых контроль развития проростка, созревание плодов (в частности, фруктов), распускание бутонов (процесс цветения), старение и опадание листьев и цветков. Этилен называют также гормоном стресса, так как он участвует в реакции растений на биотический и абиотический стресс, и синтез его в органах растений усиливается в ответ на разного рода повреждения. Кроме того, являясь летучим газообразным веществом, этилен осуществляет быструю коммуникацию между разными органами растений и между растениями в популяции, что важно. в частности, при развитии стресс-устойчивости.

К числу наиболее известных функций этилена относится развитие так называемого тройного ответа у этиолированных (выращенных в темноте) проростков при обработке этим гормоном. Тройной ответ включает в себя три реакции: укорочение и утолщение гипокотиля, укорочение корня и усиление апикального крючка (резкий изгиб верхней части гипокотиля). Ответ проростков на этилен крайне важен на первых этапах их развития, так как способствует пробивание ростков к свету.

Открытие

В 1901 году русский учёный Дмитрий Нелюбов показал, что активным компонентом природного газа, вызывающим эти изменения, является не основной его компонент, метан, а присутствующий в нём в малых количествах этилен.[11] Позднее в 1917 году Сара Дубт доказала, что этилен стимулирует преждевременное опадание листьев.[12] Однако только в 1934 году Гейн обнаружил, что сами растения синтезируют эндогенный этилен.[13] В 1935 году Крокер предположил, что этилен является растительным гормоном, ответственным за физиологическое регулирование созревания плодов, а также за старение вегетативных тканей растения, опадание листьев и торможение роста.[14]

Синтез этилена

Этилен образуется практически во всех частях высших растений, включая листья, стебли, корни, цветки, мякоть и кожуру плодов и семена. Образование этилена регулируется множеством факторов, включая как внутренние факторы (например фазы развития растения), так и факторы внешней среды. В течение жизненного цикла растения, образование этилена стимулируется в ходе таких процессов, какоплодотворение (опыление), созревание плодов, опадание листьев и лепестков, старение и гибель растения. Образование этилена стимулируется также такими внешними факторами, как механическое повреждение или ранение, нападение паразитов (микроорганизмов, грибков, насекомых и др.), внешние стрессы и неблагоприятные условия развития, а также некоторыми эндогенными и экзогенными стимуляторами, такими, как ауксины и другие.[15]

Цикл биосинтеза этилена начинается с превращения аминокислоты метионина в S-аденозил-метионин (SAMe) при помощи фермента метионин-аденозилтрансферазы. Затем S-аденозил-метионин превращается в 1-аминоциклопропан-1-карбоксиловую кислоту (АЦК, ACC) при помощи фермента 1-аминоциклопропан-1-карбоксилат-синтетазы (АЦК-синтетазы). Активность АЦК-синтетазы лимитирует скорость всего цикла, поэтому регуляция активности этого фермента является ключевой в регуляции биосинтеза этилена у растений. Последняя стадия биосинтеза этилена требует наличия кислорода и происходит при действии фермента аминоциклопропанкарбоксилат-оксидазы (АЦК-оксидазы), ранее известной как этиленобразующий фермент. Биосинтез этилена у растений индуцируется как экзогенным, так и эндогенным этиленом (положительная обратная связь). Активность АЦК-синтетазы и, соответственно, образование этилена повышается также при высоких уровнях ауксинов, в особенности индолуксусной кислоты, и цитокининов.

Этиленовый сигнал у растений воспринимается минимум пятью различными семействами трансмембранных рецепторов, представляющих собой димеры белков. Известен, в частности, рецептор этилена ETR1 у арабидопсиса (Arabidopsis). Гены, кодирующие рецепторы для этилена, были клонированы у арабидопсиса и затем у томата. Этиленовые рецепторы кодируются множеством генов как в геноме арабидопсиса, так и в геноме томатов. Мутации в любом из семейства генов, которое состоит из пяти типов этиленовых рецепторов у арабидопсиса и минимум из шести типов рецепторов у томата, могут привести к нечувствительности растений к этилену и нарушениям процессов созревания, роста и увядания.[16] Последовательности ДНК, характерные для генов этиленовых рецепторов, были обнаружены также у многих других видов растений. Более того, этиленсвязывающий белок был найден даже у цианобактерий.[7]

Неблагоприятные внешние факторы, такие, как недостаточное содержание кислорода в атмосфере, наводнение, засуха, заморозки, механическое повреждение (ранение) растения, нападение патогенных микроорганизмов, грибков или насекомых, могут вызывать повышенное образование этилена в тканях растений. Так, например, при наводнении корни растения страдают от избытка воды и недостатка кислорода (гипоксии), что приводит к биосинтезу в них 1-аминоциклопропан-1-карбоксиловой кислоты. АЦК затем транспортируется по проводящим путям в стеблях вверх, до листьев, и в листьях окисляется до этилена. Образовавшийся этилен способствует эпинастическим движениям, приводящим к механическому стряхиванию воды с листьев, а также увяданию и опаданию листьев, лепестков цветков и плодов, что позволяет растению одновременно и избавиться от избытка воды в организме, и сократить потребность в кислороде за счёт сокращения общей массы тканей.[17]

Небольшие количества эндогенного этилена также образуются в клетках животных, включая человека, в процессе перекисного окисления липидов. Некоторое количество эндогенного этилена затем окисляется доэтиленоксида, который обладает способностью алкилировать ДНК и белки, в том числе гемоглобин (формируя специфический аддукт с N-терминальным валином гемоглобина — N-гидроксиэтил-валин).[18] Эндогенный этиленоксид также может алкилировать гуаниновые основания ДНК, что приводит к образованию аддукта 7-(2-гидроксиэтил)-гуанина, и является одной из причин присущего всем живым существам риска эндогенного канцерогенеза.[19] Эндогенный этиленоксид также является мутагеном.[20][21] С другой стороны, существует гипотеза, что если бы не образование в организме небольших количеств эндогенного этилена и соответственно этиленоксида, то скорость возникновения спонтанных мутаций и соответственно скорость эволюции была бы значительно ниже.

Абсцизовая кислота

Абсцизовая кислота — это гормон растений (изопреноид). Впервые была обнаружена в экспериментах по поиску вещества по способности вызывать опадение листьев и коробочек хлопчатника.

Открытие

Первые препараты абсцизовой кислоты (АБК) были независимо выделены в 1963 г. из листьев березы Ф. Эддикоттом и сотрудниками (США) и Ф. Уорингом и сотрудниками (Великобритания).

Основное место синтеза АБК — листья и корневой чехлик. Она присутствует в клетке как в свободной форме, так и в виде конъюгатов с глюкозой.[3]

АБК называют гормоном-антагонистом ауксина, цитокининов, гиббереллина, так как она тормозит реакции, которые вызывают эти гормоны.[3]

Биосинтез

По своей химической природе АБК, как и гиббереллины, является терпеноидом; у этих двух групп гормонов-антагонистов есть общий предшественник — геранилгеранил-дифосфат, который также является предшественником хлорофилла. Из ГГДФ синтезируются каротиноиды, их производным является зеаксантин, который является первым предшественником в пути биосинтеза АБК.[2]

Биосинтез АБК в растении происходит в основном в молодых сосудистых пучках, а также в замыкающих клетках устьиц. Основными этапами биосинтеза АБК являются:

1. Синтез виолоксантина из зеаксантина, который катализируют ферменты зеаксантин-эпоксидазы (ZEP).

2. Синтез неоксантина из виолоксантина, который катализируют две группы ферментов: неоксантин-синтазы (NSY) и изомеразы, важные для синтеза цис-изомеров виолоксантина и неоксантина.

3. Синтез ксантоксина из цис-неоксантина, который катализируют 9-цис-эпоксикаротеноид-диоксигеназы (NCED).

4. Синтез АБК из ксантоксина через АБК-альдегид, две последовательные стадии которого катализируются ксангоксин-дегидрогеназой (АВА2) и АБК-альдегидоксидазой (ААОЗ).

Первые три этапа биосинтеза АБК, как и синтез каротиноидов, проходят в пластидах, последний — в цитозоле.[2]

Инактивация и катаболизм

Существует два типа реакций, приводящих к инактивации АБК, — гидроксилирование и синтез конъюгатов.

С-7, С-8 и С-9-гидроксилированные формы АБК обладают слабой биологической активностью, кроме того, гидроксилирование по С-8 является первым шагом в образовании конъюгатов АБК с глюкозой.

АБК и её С-8-гидроксилированная форма являются мишенью для образования конъюгатов с глюкозой, наиболее распространенным среди которых является АБК-глюкозильный эфир. Как правило, конъюгаты АБК физиологически неактивны и накапливаются в вакуолях при старении. В то же время АБК-глюкозильный эфир играет роль в дальнем транспорте АБК, которая проходит по флоэме и ксилеме.[2]

Функции

Среди функций АБК наиболее известными являются контроль закрывания устьиц, стимуляция созревания зародыша и периода покоя семян, ингибирование прорастания. Кроме того, АБК является одним из центральных регуляторов адаптации растений к абиотическим стрессам — таким, как высыхание, засоление и низкая температура.[2]

Абсцизовая кислота особенно важна для поддержания водного баланса в условиях засухи; недостаток влаги ведет к резкой активации синтеза АБК и её выходу из мест депонирования во внутри- и внеклеточное пространство. К числу быстрых эффектов АБК, которые имеют место через несколько минут после повышения её концентрации, относится асимметричный транспорт ионов калия, кальция и анионов через мембрану замыкающих клеток устьиц, в результате чего замедляется поступление воды в клетки, их тургор падает, что приводит к закрытию устьичной щели. Одновременно абсцизовая кислота активирует всасывание воды корнями. Помимо этого, АБК является одним из ключевых регуляторов развития семян. АБК регулирует созревание зародыша, препятствует преждевременному прорастанию семян при их созревании, продлевает период покоя зрелых семян, спящих почек, клубней и корнеплодов.[2]

Показана роль абсцизовой кислоты в опадании листьев. При подготовке к зиме абсцизовая кислота синтезируется в концевых почках растений. Это приводит к замедлению роста, а из прилистников образуются защитные чешуйки-колеоптели, покрывающие спящие почки в холодный период. Абсцизовая кислота останавливает деление клеток камбия и останавливает первичный и вторичный рост.

Место и время образования

  • Образуется в период предуборочного подсушивания растений при уплотнении почвы[4]
  • Образуется в зеленых фруктах и семенах перед началом зимнего периода
  • Может быстро транспортироваться из корней в листья по сосудам ксилемы
  • Синтезируется в ответ на стрессовое воздействие факторов окружающей среды
  • Синтезируется во всех органах растений — в корнях, цветках, листьях, стебле

Эффекты

  • Вызывает закрывание устьиц, снижает транспирацию и предотвращает потерю влаги[5]
  • Останавливает созревание плодов
  • Останавливает прорастание
  • Ингибирует синтез ферментов, необходимых для фотосинтеза.[6]

Законы биоэнергетики

Первый закон

Живая клетка избегает прямого использования энергии внешних ресурсов для совершения полезной работы. Она сначала превращает их в одну из трех конвертируемых форм энергии (“энергетических валют”), а именно: в АТФ, протонный или натриевый потенциал, которые затем расходуются для осуществления различных энергоемких процессов.

Второй закон

Любая живая клетка всегда располагает как минимум двумя “энергетическими валютами”: водорастворимой (АТФ) и связанной с мембраной (p Na или p H).

Третий закон

“Энергетические валюты” клетки могут превращаться одна в другую. Поэтому получения хотя бы одной из них за счет внешних ресурсов достаточно для поддержания жизнедеятельности.

Дополнительные материалы:

Побеги и почки


Похожие статьи: