Нейронный механизм ассоциативного научения

      Комментарии к записи Нейронный механизм ассоциативного научения отключены

Классический условный рефлекс представляет собой более сложную, чем габитуация или сенситизация, форму научения. Он отличается от этих, более простых форм необходимостью запомнить значение совпадения во времени двух стимулов: слабого, обычно не вызывающего никакого ответа вследствие стойкого привыкания к нему, с сильным, всегда вызывающим закономерную рефлекторную реакцию. Об образовании условного рефлекса можно говорить в том случае, когда слабый стимул, несколько раз подействовавший непосредственно перед сильным стимулом, начнёт вызывать такую же реакцию, как и сам сильный стимул. Формирующаяся при образовании условного рефлекса память оказывается более стойкой, чем при габитуации или сенситизации.

У аплизии условный рефлекс можно выработать, используя в качестве слабого раздражителя действие струи воды или прикосновение к коже сифона или мантии (условный раздражитель) и подкрепляя слабый стимул действием сильного разряда электрического тока на область хвоста (безусловный раздражитель). Сначала можно убедиться, что резкое раздражение хвостовой области всегда вызывает защитное втягивание жабры, тогда как слабое раздражение кожи сифона или мантии не вызывает никакой реакции. После нескольких сочетаний действия слабого раздражителя с сильным оказывается, что слабый раздражитель тоже начинает вызывать энергичное втягивание жабры. Читать далее

Морфология, ультраструктура и химический состав вирусов

      Комментарии к записи Морфология, ультраструктура и химический состав вирусов отключены

Следует различать широкое и узкое значение понятия «вирус». В широком смысле слова, вирус – это простейшая неклеточная форма жизни. В узком смысле слова, вирус – это одна из двух внутриклеточных форм существования вируса в виде собственной нуклеиновой кислоты.

В зависимости от характеристик генома, особенностей строения и размножения, различают канонические (от греч. kanon – норма, правило) и неканонические вирусы.

Канонические вирусы– это вирусы, имеющие оболочку, заключающую в себя геном, и размножающиеся без помощи других вирусов. Почти все патогенные для человека, животных, растений и бактерий вирусы являются каноническими.

К неканоническим вирусам относятся вирусоиды, вироиды, плазмиды, ретротранспозоны и прионы. Вирусоиды – это вирусы, имеющие оболочку, покрывающую геном, но не способные размножаться без вируса-помощника. Напротив, вироиды, плазмиды и прионы размножаются без помощи других вирусов, но не имеют защищающей геном оболочки. Из числа неканонических вирусов патогенными для человека являются прионы и один вирусоид (возбудитель гепатита Д). Остальные вирусоиды и все известные вироиды вызывают заболевания у растений. Плазмиды обитают только в бактериях.

Канонические вирусы и вирусоиды имеют две формы существования: 1) внеклеточную, в виде вирионов, то есть целых вирусных особей, покоящихся без признаков жизни и движения; и 2) внутриклеточную, в виде свободных нуклеиновых кислот (вирус) или нуклеиновых кислот, интегрированных в геном клетки-хозяина (провирус). Читать далее

Анаплеротический путь синтеза оксалоацетата

      Комментарии к записи Анаплеротический путь синтеза оксалоацетата отключены

Наиболее важная анаплеротическая реакция в животных тканях – это ферментативное карбоксилирование пирувата за счет СО2 с образованием оксалоацетата (рис. 19.4); катализирует эту обратимую реакцию фермент пuруваmкарбоксuлаза:

Анаплеротический путь синтеза оксалоацетата

Анаплеротический путь синтеза оксалоацетата

Рис. 19.4. Пируваткарбоксилазная реакция

На рис. 19.4. видно, что карбоксильная группа биотина образует пептидную связь с e-аминогруппой остатка лизина, входящего в состав активного центра фермента. СО2 активируется, образуя N-карбоксипроизводное биотинильной простетической группы. Затем эта карбоксильная группа ? непосредственный донорСО2 для пирувата ? переносится на пируват.

Если для цикла лимонной кислоты не хватает оксалоацетата или какого-нибудь другого промежуточного продукта цикла, то карбоксилирование пирувата стимулируется и запас оксалоацетата растет. Для ферментативного присоединения карбоксильной группы к молекуле пирувата требуется энергия. Её источником служит сопряженное с данной реакцией расщепление АТP до ADP и фосфата. Поскольку суммарная реакция сопровождается лишь незначительным изменением стандартной свободной энергии, мы можем заключить, что свободная энергия, необходимая для присоединения карбоксильной группы к пирувату, примерно равна свободной энергии, выделяющейся при гидролизе АТР. Читать далее

Лекция № 2. основные пути обмена аминокислот в тканях

      Комментарии к записи Лекция № 2. основные пути обмена аминокислот в тканях отключены

План лекции:

1. Пути использования аминокислот в тканях.

2. Пути распада аминокислот (в виде формул):

2.1. Трансаминирование; роль АСТ и АЛТ.

2.2. Непрямое окислительное дезаминирование аминокислот, роль глутаматдегидрогеназы.

2.3. ?-Декарбоксилирование, образование биогенных аминов (гистамина, ГАМК, серотонина и др.), инактивация биогенных аминов.

3. Наследственные болезни обмена аминокислот (ФКУ, алкаптонурия, альбинизм и др.).

Содержание лекционного материала.

1. Пути использования аминокислот в тканях.

Основные направления использования аминокислот в тканях:

a) Синтез специфических белков.

b) Синтез азотсодержащих небелковых соединений (креатин, пуриновые и пиримидиновые нуклеотиды, гем, адреналин и др.).

c) Использование углеродных скелетов аминокислот для образования глюкозы – глюкогенные аминокислоты.

d) Использование углеродных скелетов аминокислот для образования кетоновых тел – кетогенные аминокислоты.

e) Полное окисление до конечных продуктов с целью получения энергии.

Лекция № 2. основные пути обмена аминокислот в тканях

2. Пути распада аминокислот.

Общая схема распада аминокислот представлена ниже:

CO2

Лекция № 2. основные пути обмена аминокислот в тканях

Читать далее

Препараты гормонов эпифиза

      Комментарии к записи Препараты гормонов эпифиза отключены

Эпифиз (шишковидная железа) играет ключевую роль в механизмах циркадных (околосуточных) ритмов. Гормоном эпифиза является мелатонин, который образуется из серотонина в зависимости от времени суток. Выделение гормона регулируется импульсацией от сетчатки. Продукция мелатонина в светлое время суток снижается, а в темное увеличивается.

Эффекты мелатонина проявляются при его взаимодействии со специфическими мелатониновыми рецепторами (Меl 1А, 1В, 1С), которые сопряжены с G-белками. Максимальная концентрация их обнаруживается в центральной нервной системе.

Синтетический аналог мелатонина (Мелаксен) нормализует циркадные ритмы, ускоряет адаптацию к быстрой смене часовых поясов, нормализует психоэмоциональный статус при десинхронозах, регулирует нейроэндокринные функции, проявляет иммуностимулирующие и антиоксидантные свойства. Наиболее выраженным является снотворное действие при бессонницах, связанных со сменой часовых поясов. Препарат не оказывает «последействия» и нормализует самочувствие после утреннего пробуждения. Кроме того, препятствует развитию депрессий в ответ на сезонное укорочение светового дня, нормализует настроение, эмоциональную и интеллектуально-мнестическую сферу. Применяется внутрь, за 30—40 мин до сна в дозе 1-5 мг.

Показания к применению: в качестве снотворного средства, для нормализации биологического ритма при смене часовых поясов. Читать далее

Cуперкомпьютер за 1 млрд евро: симуляция мозга человека

      Комментарии к записи Cуперкомпьютер за 1 млрд евро: симуляция мозга человека отключены

Слайд19

Еврокомиссия одобрила финансирование самого крупного и амбициозного проекта по симуляции человеческого мозга. Проект Human Brain Project объединит усилия европейских учёных на 2013-2023 гг и предварительно оценивается в 1,19 млрд евро.

Human Brain Project — это совместный проект, в котором примут участия десятки университетов из разных государств Евросоюза, а также США, Израиля и других стран. Цель проекта — создать единую открытую платформу для экспериментов с симуляцией функций человеческого мозга, некий единый открытый фреймворк. Можно будет разработать и новые компьютерные модели эмуляции, и тестировать новые методы лечения болезней.

Проект Human Brain Project должен стать стандартной платформой для исследователей. Предполагается, что симуляции мозга позволит на порядок ускорить экспериментальные исследования. Если добавить в базу всю информацию, которая уже собрана в рамках экспериментов, то в будущем модель можно использовать для симуляции других экспериментов.

Подробнее о планах Human Brain Project см. в финальном отчёте Human Brain Project для Еврокомиссии. Первая «разгонная» фаза займёт 2,5 года и начнётся в конце 2013 г., координация проекта возложена на Федеральную политехническую школу Лозанны (Ecole Polytechnique Federale de Lausanne), Швейцария. Читать далее

Строение и функции яйцеклетки

      Комментарии к записи Строение и функции яйцеклетки отключены

Яйцеклетка – крупная неподвижная клетка, обладающая за-па-сом питательных веществ. Размеры женской яйцеклетки составляют 150–170 мкм (гораздо больше мужских сперматозоидов, размер которых 50–70 мкм). Функции питательных веществ различны. Их выполняют:

1) компоненты, нужные для процессов биосинтеза белка (ферменты, рибосомы, м-РНК, т-РНК и их предшественники);

2) специфические регуляторные вещества, которые контролируют все процессы, происходящие с яйцеклеткой, например, фактор дезинтеграции ядерной оболочки (с этого процесса начинается профаза 1 мейотического деления), фактор, преобразующий ядро сперматозоида в пронуклеус перед фазой дробления, фактор, ответственный за блок мейоза на стадии метафазы II и др.;

3) желток, в состав которого входят белки, фосфолипиды, различные жиры, минеральные соли. Именно он обеспечивает питание зародыша в эмбриональном периоде.

По количеству желтка в яйцеклетке она может быть алеци-тальной, т. е. содержащей ничтожно малое количество желтка, поли-, мезо– или олиголецитальной. Человеческая яйцеклетка относится к алецитальным. Это обусловлено тем, что человеческий зародыш очень быстро переходит от гистиотрофного типа питания к гематотрофному. Также человеческая яйцеклетка по распределению желтка является изолецитальной: при ничтожно малом количестве желтка он равномерно располагается в клетке, поэтому ядро оказывается примерно в центре. Читать далее