Пищеварительные соки и их изучение

В стенках пищеварительного канала человека содержится огромное количество железистых клеток, вырабатывающих пищеварительные соки. Поступая в полость, они смешиваются с пережёванной пищей, вступая с ней в сложные химические взаимодействия. К типичным пищеварительным сокам относят слюну и желудочный сок.

Будучи прозрачной слабощелочной жидкостью, слюна содержит в своём составе минеральные соли, белки: амилазу, мальтазу, муцин, лизоцим. Первые два белка участвуют в расщеплении крахмала. Причём амилаза расщепляет крахмал до мальтозы (отдельные фрагменты), а потом мальтаза расщепляет её до глюкозы. Муцин придаёт слюне вязкость, склеивая пищевой комок, а лизоцим обладает бактерицидным действием.

Слизистая оболочка желудка каждые сутки выделяет около 2,5 л желудочного сока, представляющего собой кислую, за счёт соляной кислоты, бесцветную жидкость, содержащую фермент пепсин, отвечающий за расщепление белка до отдельных фрагментов и аминокислот. Выработка желудочного сока осуществляется с помощью нейрогуморальных механизмов.

Соляная кислота не только активизирует пепсин. Белки настолько сложны, что их переваривание является длительным процессом. Кислота разрушает водородные связи, которые удерживают вторичную структуру белка, а также прочные стенки клеток растений, не говоря уже о разрушении соединительной ткани в мясе; её количество зависит от характера пищи. Читать далее

В белке до и после изменений в днк

      Комментарии к записи В белке до и после изменений в днк отключены

Решение задач по цитологии на применение знаний в новой ситуации

Задачи на количественные соотношения при реализации наследственной информации

При решении задач данного типа необходимо помнить и обязательно указывать в пояснениях следующее:

  • Каждая аминокислота доставляется к рибосомам одной тРНК, значит, количество аминокислот в белке равно количеству молекул тРНК, участвующих в биосинтезе белка;
  • Каждая аминокислота кодируется тремя нуклетидами(одним триплетом или кодоном), следовательно количество кодирующих нуклеотидов всегда в три раза больше, а количество триплетов(кодонов) равно количеству аминокислот в белке;
  • Каждая тРНК имеет антикодон, комплементарный кодону иРНК, поэтому количество антикодонов, а значит и в целом молекул тРНК равно количеству кодонов иРНК;
  • иРНК комплиментарна одной из цепей ДНК, поэтому количество нуклеотидов иРНК равно количеству нуклеотидов ДНК. Количество триплетов, разумеется, также будет одинаковым.

Задача 1. В трансляции участвовало 75 молекул тРНК. Определите число аминокислот, входищих в состав синтезируемого белка, а также число триплетов и нуклеотидов в гене, который синтезирует данный белок.

Решение .

1. Одна молекула тРНК доставляет к рибосоме одну аминокислоту. Читать далее

Гладкая мышечная ткань эпидермального происхождения

      Комментарии к записи Гладкая мышечная ткань эпидермального происхождения отключены

Миоэпителиальные клетки развиваются из эпидермального зачатка. Они встречаются в потовых, молочных, слюнных и слезных железах и имеют общих предшественников с железистыми секреторными клетками. Миоэпителиальные клетки непосредственно прилежат к собственно эпителиальным и имеют общую с ними базальную мембрану. При регенерации те и другие клетки восстанавливаются из общих малодифференцированных предшественников. Большинство миоэпителиальных клеток имеют звездчатую форму. Эти клетки нередко называют корзинчатыми: их отростки охватывают концевые отделы и мелкие протоки желез. В теле клетки располагаются ядро и органеллы общего значения, а в отростках — сократительный аппарат, организованный, как и в клетках мышечной ткани мезенхимного типа.

Гладкая мышечная ткань нейрального происхождения

Миоциты этой ткани развиваются из клеток нейрального зачатка в составе внутренней стенки глазного бокала. Тела этих клеток располагаются в эпителии задней поверхности радужки. Каждая из них имеет отросток, который направляется в толщу радужки и ложится параллельно ее поверхности. В отростке находится сократительный аппарат, организованный так же, как и во всех гладких миоцитах. В зависимости от направления отростков (перпендикулярно или параллельно краю зрачка) миоциты образуют две мышцы — суживающую и расширяющую зрачок. Читать далее

Характеристика нервных клеток

      Комментарии к записи Характеристика нервных клеток отключены

Нервная ткань. Периферический нерв.

— Эволюционно наиболее молодая ткань организма человека

— Участвует в построении органов нервной системы

— Вместе с эндокринной системой обеспечивает нейрогуморальную регуляцию деятельности тканей и органов, коррелирует и интегрирует их функции в пределах организма. А также адаптирует их к изменяющимся условиям среды.

— Нерв ткань воспринимает раздражения, приходит в состояние возбуждения, формирует и проводит нервные импульсы.

— Находится в провизорном состоянии. Не достигла дефинитивного (не сформировалась окончательно) развития и как таковая не существует, так как процесс ее образования шел одновременно с формированием органов нервной системы.

Провизор

ность нервной ткани подтверждается апоптозами, т.е запрограммирована гибелью большого количества клеток. Ежегодно мы теряем до 10 млн клеток нервной ткани.

Состоит:

1) Нервные клетки (нейроциты/нейроны)

2) Вспомогательные клетки (нейроглия)

Процесс развития нервной ткани в эмбриональном периоде связан с преобразованием нервной закладки. Она выделяется в составе дорсальной эктодермы и обособляется из нее в виде нервной пластинки.

Нервная пластинка прогибается по средней линии, образуя нервный желобок. Его края смыкаются, образуя нервную трубку. Читать далее

Результаты взаимодействия вируса с клеткой хозяина

      Комментарии к записи Результаты взаимодействия вируса с клеткой хозяина отключены

Репродукция вируса.

1. Адсорбция. Прикрепление вирона к клеточной поверхность за счет рецепторов на клетке узнающих субстанции на поверхности вируса. Высоко специыфический процесс. Например вирус гриппа способен адсорбироваться на клетках продуцирующих муцин. Клеточным рецептор выступает сиаловая кислота. Для ВИЧ-вируса СД4. При этом одни вирусы имеют клеточные рецепторы только в организме приматов. Другие вирусы только среди бактериальных клеток, третьи только в организме насекомых и т.д.

2. Проникновение вируса в клетку. Рецепторный эндоцитоз. Вирус инвагинирует внутрь клетки с образованием фагосомы внутри клетки (Грипп). Слияние мембран – вирусная оболочка и плазматическая мембрана клетки сливается (ВИЧ), этот механизм включает и соседние клетки не инфицированные вирусом с образованием синцития.

3. «Раздевание вирона». Депроитенизация.Удаление вирусных защитных оболочек и освобождение генома. Это происходит в определенных участках при участии клеточных ферментов. Эта стадия необходима для экспрессии генома вируса, что бы все гены вируса заработали.

4. Транскрипция. Переписывания генетической информации ДНК или РНК на рибосомы клетки по законам генетического кода. Транскрипция заканчивается образованием иРНК. При этом у вирусов ДНК-содержащих иРНК синтезируется на одной из нитей ДНК. Читать далее

Строение молекулы днк. схема молекулы днк.

      Комментарии к записи Строение молекулы днк. схема молекулы днк. отключены

Вопрос 6

Строение молекулы днк. схема молекулы днк.

Пластиды Хлоропласты, хромопласты, лейкопласты Отсутствует
Способ питания Автотрофный Гетеротрофный (сапротрофный, хемотрофный).
Синтез АТФ В хлоропластах, митохондриях. В митохондриях
Расщепление АТФ В хлоропластах и всех частях клетки, где необходимы затраты энергии.
Клеточный центр У низших растений. Во всех клетках.
Целлюлозная клеточная стенка Расположена снаружи от клеточной мембраны. Отсутствует.
Включение Запасные питательные вещества в виде зерен крахмала, белка, капель масла; в вакуоли с клеточным соком; кристаллы солей Запасные питательные вещества в виде зерен и капель (белки, жиры, углевод гликоген); конечные продукты обмена, кристаллы солей; пигменты.
Вакуоли Крупные полости, заполненные клеточным соком – водным раствором различных веществ, являющихся запасными или конечными продуктами. Осмотические резервуары клетки. Сократительные, пищеварительные, выделительные вакуоли. Обычно мелкие.

Читать далее

История получения лимонной кислоты

      Комментарии к записи История получения лимонной кислоты отключены

В 1891 г. немецкий ученый Вемер установил способность плесневых грибов продуцировать органические кислоты. При выращивании Л. niger на среде с сахаром им было констатировано выделение щавелевой кислоты. Через два года Вемер обнаружил лимонную кислоту, накапливающуюся в среде при выращивании грибов, названных им Citromyces (С. prefferianus и С. glaber), впоследствии отнесенных к роду Penicillium. Вемер пытался осуществить производство лимонной кислоты с помощью гриба из сахара. Работа окончилась неудачей в связи с рядом трудностей, непреодолимых в то время.

В 1917 г. американский ученый Кэрри сообщил о способности ряда штаммов A. niger продуцировать лимонную кислоту наряду с щавелевой. Это было важное открытие, поскольку в отличие от плохо растущих пеиициллов этот гриб характеризовался мощным и быстрым ростом. Штамм, с которым работал Кэрри, и условия эксперимента были в дальнейшем использованы американской фирмой «Пфай-зер» для организации в 1923 г. первого микробиологического процесса производства лимонной кислоты.

Работы Вемера и Кэрри вызвали большой интерес к изучению

некоторых грибов, и в первую очередь продукции ими органических кислот. В этом плане развернулись широкомасштабные исследования в различных странах, в том числе Англии, Чехословакии, США и Японии. Читать далее